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Foreword

I met Cris Forster more than thirty years ago. Shortly thereafter, I saw him perform Song of Myself, 
his setting of Walt Whitman poems from Leaves of Grass. His delivery was moving and effective. 
Several of the poems were accompanied by his playing on unique instruments — one an elegant 
box with many steel strings and moveable bridges, a bit like a koto in concept; the other had a big 
wheel with strings like spokes from offset hubs, and he rotated the wheel as he played and intoned 
the poetry. I was fascinated.
 Since that time, Cris has built several more instruments of his own design. Each shows exquisite 
care in conception and impeccable craftsmanship in execution. And of course, they are a delight to 
hear. Part of what makes them sound so good is his deep understanding of how acoustic musical 
instruments work, and part is due to his skill in working the materials to his exacting standards.
 But another important aspect of their sound, and indeed one of the main reasons Cris could not 
settle for standard instruments, is that his music uses scales and harmonies that are not found in 
the standard Western system of intonation (with each octave divided into twelve equal semitones, 
called equal temperament). Rather, his music employs older notions of consonance, which reach 
back as far as ancient Greek music and to other cultures across the globe, based on what is called 
just intonation. Here, the musical intervals that make up the scales and chords are those that occur 
naturally in the harmonic series of overtones, in stretched flexible strings, and in organ pipes, for 
example.
 In just intonation, the octave is necessarily divided into unequal parts. In comparison to equal 
temperament, the harmonies of just intonation have been described as smoother, sweeter, and/or 
more powerful. Many theorists consider just intonation to be the standard of comparison for con-
sonant intervals. There has been a resurgence of interest in just intonation since the latter part of 
the twentieth century, spurred by such pioneers as Harry Partch and Lou Harrison. Even so, the 
community of just intonation composers remains comparatively quite small, and the subset of those 
who employ only acoustic instruments is much smaller still. I know of no other living composer who 
has created such a large and varied ensemble of high-quality just intoned acoustical instruments, 
and a body of music for them, as Cris Forster.
 Doing what he has done is not easy, far from it. The long process of developing his instruments 
has required endless experimentation and careful measurement, as well as intense study of the liter-
ature on acoustics of musical instruments. In this way Cris has developed deep and rich knowledge 
of how to design and build instruments that really work. Also, in the service of his composing, Cris 
has studied the history of intonation practices, not only in the Western tradition, but around the 
world.
 This book is his generous offering of all that hard-earned knowledge, presented as clearly as he 
can make it, for all of you who have an interest in acoustic musical instrument design and/or musi-
cal scales over time and space. The unifying theme is how mathematics applies to music, in both the 
acoustics of resonant instruments and the analysis of musical scales. The emphasis throughout is to 
show how to use these mathematical tools, without requiring any background in higher mathemat-
ics; all that is required is the ability to do arithmetic on a pocket calculator, and to follow Cris’ clear 
step-by-step instructions and examples. Any more advanced mathematical tools required, such as 
logarithms, are carefully explained with many illustrative examples.
 The first part of the book contains practical information on how to design and build musical 
instruments, starting from first principles of vibrating sound sources of various kinds. The ideas are 
explained clearly and thoroughly. Many beautiful figures have been carefully conceived to illumi-
nate the concepts. And when Cris gives, say, formulas for designing flutes, it’s not just something 
he read in a book somewhere (though he has carefully studied many books); rather, you can be 
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sure it is something he has tried out: he knows it works from direct experience. While some of this 
information can be found (albeit in a less accessible form) in other books on musical acoustics, 
other information appears nowhere else. For example, Cris developed a method for tuning the over-
tones of marimba bars that results in a powerful, unique tone not found in commercial instruments. 
Step-by-step instructions are given for applying this technique (see Chapter 6). Another innovation 
is Cris’ introduction of a new unit of mass, the “mica,” that greatly simplifies calculations using 
lengths measured in inches. And throughout Cris gives careful explanations, in terms of physical 
principles, that make sense based on one’s physical intuition and experience.
 The latter part of the book surveys the development of musical notions of consonance and scale 
construction. Chapter 10 traces Western ideas about intonation, from Pythagoras finding number in 
harmony, through “meantone” and then “well-temperament” in the time of J.S. Bach, up to modern 
equal temperament. The changing notions of which intervals were considered consonant when, and 
by whom, make a fascinating story. Chapter 11 looks at the largely independent (though sometimes 
parallel) development of musical scales and tunings in various Eastern cultures, including China, 
India, and Indonesia, as well as Persian, Arabian, and Turkish musical traditions. As far as possible, 
Cris relies on original sources, to which he brings his own analysis and explication. To find all of 
these varied scales compared and contrasted in a single work is unique in my experience.
 The book concludes with two short chapters on specific original instruments. One introduces 
the innovative instruments Cris has designed and built for his music. Included are many details 
of construction and materials, and also scores of his work that demonstrate his notation for the 
instruments. The last chapter encourages the reader (with explicit plans) to build a simple stringed 
instrument (a “canon”) with completely adjustable tuning, to directly explore the tunings discussed 
in the book. In this way, the reader can follow in the tradition of Ptolemy, of learning about music 
through direct experimentation, as has Cris Forster.

David R. Canright, Ph.D.
Del Rey Oaks, California
January 2010

Foreword
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introduction and acknowledgments

In simplest terms, human beings identify musical instruments by two aural characteristics: a par-
ticular kind of sound or timbre, and a particular kind of scale or tuning. To most listeners, these two 
aspects of musical sound do not vary. However, unlike the constants of nature — such as gravita-
tional acceleration on earth, or the speed of sound in air — which we cannot change, the constants 
of music — such as string, percussion, and wind instruments — are subject to change. A creative 
investigation into musical sound inevitably leads to the subject of musical mathematics, and to a 
reexamination of the meaning of variables.
 The first chapter entitled “Mica Mass” addresses an exceptionally thorny subject: the derivation 
of a unit of mass based on an inch constant for acceleration. This unit is intended for builders who 
measure wood, metal, and synthetic materials in inches. For example, with the mica unit, builders 
of string instruments can calculate tension in pounds-force, or lbf, without first converting the diam-
eter of a string from inches to feet. Similarly, builders of tuned bar percussion instruments who know 
the modulus of elasticity of a given material in pounds-force per square inch, or lbf/in2, need only 
the mass density in mica/in3 to calculate the speed of sound in the material in inches per second; a 
simple substitution of this value into another equation gives the mode frequencies of uncut bars.
 Chapters 2–4 explore many physical, mathematical, and musical aspects of strings. In Chapter 
3, I distinguish between four different types of ratios: ancient length ratios, modern length ratios, 
frequency ratios, and interval ratios. Knowledge of these ratios is essential to Chapters 10 and 11. 
Many writers are unaware of the crucial distinction between ancient length ratios and frequency 
ratios. Consequently, when they attempt to define arithmetic and harmonic divisions of musi-
cal intervals based on frequency ratios, the results are diametrically opposed to those based on  
ancient length ratios. Such confusion leads to anachronisms, and renders the works of theorists like 
Ptolemy, Al-Frb, Ibn Sn, and Zarlino incomprehensible.
 Chapter 5 investigates the mechanical interactions between piano strings and soundboards, and 
explains why the large physical dimensions of modern pianos are not conducive to explorations of 
alternate tuning systems.
 Chapters 6 and 7 discuss the theory and practice of tuning marimba bars and resonators. The 
latter chapter is essential to Chapter 8, which examines a sequence of equations for the placement 
of tone holes on concert flutes and simple flutes.
 Chapter 9 covers logarithms, and the modern cent unit. This chapter serves as an introduction 
to calculating scales and tunings discussed in Chapters 10 and 11. 
 In summary, this book is divided into three parts. (1) In Chapters 1–9, I primarily examine 
various vibrating systems found in musical instruments; I also focus on how builders can customize 
their work by understanding the functions of variables in mathematical equations. (2) In Chapter 
10, I discuss scale theories and tuning practices in ancient Greece, and during the Renaissance and 
Enlightenment in Europe. Some modern interpretations of these theories are explained as well. 
In Chapter 11, I describe scale theories and tuning practices in Chinese, Indonesian, and Indian 
music, and in Arabian, Persian, and Turkish music. For Chapters 10 and 11, I consistently studied 
original texts in modern translations. I also translated passages in treatises by Ptolemy, Al-Kind, 
the Ikhwn al-a, Ibn Sn, Stifel, and Zarlino from German into English; and in collaboration 
with two contributors, I participated in translating portions of works by Al-Frb, Ibn Sn, a 
Al-Dn, and Al-Jurjn from French into English. These translations reveal that all the above-
mentioned theorists employ the language of ancient length ratios. (3) Finally, Chapters 12 and 13 
recount musical instruments I have built and rebuilt since 1975.
 I would like to acknowledge the assistance and encouragement I received from Dr. David 
R. Canright, associate professor of mathematics at the Naval Postgraduate School in Monterey,  
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California. David’s unique understanding of mathematics, physics, and music provided the foun-
dation for many conversations throughout the ten years I spent writing this book. His mastery of 
differential equations enabled me to better understand dispersion in strings, and simple harmonic 
motion of air particles in resonators. In Section 4.5, David’s equation for the effective length of stiff 
strings is central to the study of inharmonicity; and in Section 6.6, David’s figure, which shows the 
effects of two restoring forces on the geometry of bar elements, sheds new light on the physics of 
vibrating bars. Furthermore, David’s plots of compression and rarefaction pulses inspired numerous 
figures in Chapter 7. Finally, we also had extensive discussions on Newton’s laws. I am very grateful 
to David for his patience and contributions.
 Heartfelt thanks go to my wife, Heidi Forster. Heidi studied, corrected, and edited myriad ver-
sions of the manuscript. Also, in partnership with the highly competent assistance of professional 
translator Cheryl M. Buskirk, Heidi did most of the work translating extensive passages from La 
Musique Arabe into English. To achieve this accomplishment, she mastered the often intricate ver-
bal language of ratios. Heidi also assisted me in transcribing the Indonesian and Persian musical 
scores in Chapter 11, and transposed the traditional piano score of “The Letter” in Chapter 12. 
Furthermore, she rendered invaluable services during all phases of book production by acting as my 
liaison with the editorial staff at Chronicle Books. Finally, when the writing became formidable, 
she became my sparring partner and helped me through the difficult process of restoring my focus. 
I am very thankful to Heidi for all her love, friendship, and support.
 I would also like to express my appreciation to Dr. John H. Chalmers. Since 1976, John has 
generously shared his vast knowledge of scale theory with me. His mathematical methods and tech-
niques have enabled me to better understand many historical texts, especially those of the ancient 
Greeks. And John’s scholarly book Divisions of the Tetrachord has furthered my appreciation for 
world tunings.
 I am very grateful to Lawrence Saunders, M.A. in ethnomusicology, for reading Chapters 3, 9, 
10, and 11, and for suggesting several technical improvements.
 Finally, I would like to thank Will Gullette for his twelve masterful color plates of the Original 
Instruments and String Winder, plus three additional plates. Will’s skill and tenacity have illumi-
nated this book in ways that words cannot convey.

Cris Forster
San Francisco, California
January 2010
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BI	 Isothermal bulk modulus; psi, lbf/in2, or mica/(ins2)
b Width; in
¢ Cent, 1/100 of a “semitone,” or 1/1200 of an “octave”; dimensionless
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J Stiffness parameter of string; dimensionless
K Radius of gyration; in
k  Spring constant; lbf/in, or mica/s2

L Length; in, cm, or mm

M  Multiple loop length of string; in

S  Single loop length of string; in
l.r. Length ratio; dimensionless
lbf Pounds-force; micain/s2

lbm Pounds-mass; 0.00259008 mica 



xii

M/u.a. Mass per unit area; mica/in2, or lbfs2/in3
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p Excess acoustic pressure; psi, lbf/in2, or mica/(ins2)
psi Pounds-force per square inch; lbf/in2, or mica/(ins2)
q Bar parameter; dimensionless
R Ideal gas constant; inlbf/(mica°R), or in2/(s2°R)
r Radius; in
S Surface area; in2

SHM Simple harmonic motion
T  Tension; lbf, or micain/s2

AT 	 Absolute temperature; dimensionless
t Time; s
U  Volume velocity; in3/s
u Particle velocity; in/s
V  Volume; in3

v Phase velocity; in/s
W  Weight density, or weight per unit volume; lbf/in3, or mica/(in2s2)
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ZM	 Mechanical impedance; mica/s
Zb	 Mechanical impedance of soundboard; mica/s
Zp	 Mechanical impedance of plate; mica/s
Zs	 Mechanical impedance of string; mica/s
ZR	 Radiation impedance; mica/s
Za	 Radiation impedance of air; mica/s
z Specific acoustic impedance; mica/(in2s)
za	 Characteristic impedance of air; 0.00153 mica/(in2s)

Greek

	 Correction coefficient, or end correction coefficient; dimensionless
  Correction, or end correction; in, cm, or mm
	 Departure of tempered ratio from just ratio; cent
	 Ratio of specific heat; dimensionless
	 Angle; degree
	 Conductivity; in
	 Bridged canon string length; in
A	 Arithmetic mean string length; in
G	 Geometric mean string length; in
H	 Harmonic mean string length; in
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	 Wavelength; in
B	 Bending wavelength; in
L	 Longitudinal wavelength; in
T	 Transverse wavelength; in
	 Poisson’s ratio; dimensionless
	 Fretted guitar string length; mm
	 Pi; » 3.1416
	 Mass density, or mass per unit volume; mica/in3, or lbfs2/in4

	 Period, or second per cycle; s
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1 / MICA MASS

There is nothing obvious about the subject of mass. For thousands of years mass remained undefined 
until Isaac Newton (1642–1727) published his Principia Mathematica in 1687. The mass density of 
a material as signified by the lowercase of the Greek letter rho () appears in all acoustic frequency 
equations and in many other equations as well. Unfortunately, the concept of mass persists in a 
shroud of unnecessary complexity and confusion. This is especially true for those who measure dis-
tances in inches. Unlike the metric system, which has two consistent mass-distance standards (the 
kilogram-meter combination and the gram-centimeter combination), the English system has only 
one consistent mass-distance standard: the slug-foot combination. Not only is the latter standard 
totally inadequate for musical instrument builders, but countless scientists and engineers who use 
inches have acknowledged the need for a second English mass unit. (See Note 19.) Although no one 
has named such a unit, many designers and engineers do their calculations as though it exists. This 
practice is completely unacceptable. Reason tells us that a measurement in inches should be just 
as admissible as a measurement in meters, centimeters, or feet. And yet, when someone substitutes 
inch measurements into an equation that also requires a mass density value, they cannot calculate 
the equation without a specialized understanding for an undefined and unnamed mass unit. To 
dispense with this practice, the following chapter defines and names a new unit of mass called mica. 
Throughout this book we will use a consistent mica-inch standard (see Equation 1.15) designed to 
make frequency and other related calculations easily manageable.
 Readers not interested in the subject of mass may simply disregard this chapter. If all your 
distance measurements are in inches, turn to Appendix C or E, find the mass density of a material 
in the mica/in3 column, substitute this value for  into the equation, and calculate the result. This 
chapter is for those interested in gaining a fundamental understanding of mass. In Part I, we will 
discuss principles of force, mass, and acceleration, and in Part II, mica mass definitions, mica unit 
derivations, and sample calculations. Although some of this material may seem inappropriate to 
discussions on the acoustics of musical instruments, readers with a thorough understanding of mass 
will avoid many conceptual and computational errors.

Part I

PrIncIPles of force, mass, and acceleratIon

     1.1     

All musical systems such as strings, bars, membranes, plates, and columns of air vibrate because 
they have (1) an elastic property called a restoring force, and (2) an inertial property called a mass. 
When we pluck a string, or strike a marimba bar, we apply an initial force to the object that ac-
celerates it from stillness to motion. Our applied force causes a displacement, or a small distortion 
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of the object’s original shape. Because the string has tension, and because the bar has stiffness, 
a restoring force responds to this displacement and returns the object to its equilibrium position. 
(Gently displace and release a telephone cord, and note how this force restores the cord to the equi-
librium position. Now try the same experiment with a piece of paper or a ruler.) However, because 
the string and the bar each have a mass, the motion of the object continues beyond this position. 
Mass causes the object to overshoot the equilibrium position, which in turn causes another distor-
tion and a subsequent reactivation of the restoring force, etc. To understand in greater detail how 
force and mass interact to produce musical vibrations,1 we turn to Newton’s first law of motion.
 According to Newton’s first law, (1) an object at rest remains at rest, and in the absence of 
friction, (2) an object in motion remains in motion, unless acted on by a force. This law states that 
all objects have inertia; that is, all objects have a resistance to a change in either the magnitude or 
the direction of motion. (1) An object without motion will not move unless a force acts to cause 
motion. (2) An object in motion will not speed up, slow down, stop, or change direction unless a 
force acts to cause such changes. Newton quantified this inertial property of matter and called it 
the mass (m  ) of an object. Therefore, an object’s mass is a measure of its inertia.
 Refer now to Figure 1.1 and consider the motion of a slowly vibrating rubber cord. If we pluck 
such a cord (or any musical instrument string), it will snap back to its equilibrium position, but it 
will not simply stop there. (a) As we displace the cord upward, tension (the elastic property of the 
cord) acts as a restoring force (f    ) that pulls the cord in a downward direction. (b) After we release 
the cord and as it moves toward the equilibrium position, its particle velocity2 (u   ) increases while 
the restoring force decreases.3 During this time, tension is acting in a downward direction and the 
cord is moving downward. (c) Upon reaching the equilibrium position, the cord has maximum ve-
locity for the instant that the restoring force = 0, and therefore the cord’s acceleration = 0. Accord-
ing to Newton’s first law, the cord continues to move past this position because the cord’s mass (the 
inertial property of the cord) will not stop moving, or change direction, unless a force acts to cause 
such changes.4 (d) Once through the equilibrium position, the restoring force reverses direction. 
Consequently, the velocity decreases because the restoring force is working in the opposite direc-
tion of the cord’s motion. During this time, tension acts in an upward direction as the cord moves 
downward. (e) At a critical moment when the restoring force is at a maximum, the cord comes to 
rest and, for an instant, the velocity is zero. (f   ) Immediately after this moment, the cord reverses 
its direction and returns to the equilibrium position. Once again, the cord’s velocity increases while 
the restoring force decreases. During this time, tension is acting in an upward direction and the 
cord is moving upward. (g) After the cord passes through the equilibrium position, (h) the restoring 
force again reverses direction, and the cord’s velocity decreases. (i) When the restoring force is at 
a maximum, the cord comes to rest. This position marks the beginning of the next cycle.

     1.2     

Before we proceed, let us first distinguish between the vertical particle velocity of a string, and the 
horizontal transverse speed of waves in a string.5 As transverse waves travel horizontally in the 
string, each particle of the string moves vertically up and down; that is, each particle moves at right 
angles to the direction of wave propagation. Furthermore, the vertical motion of musical instrument 
strings is also due to the principle of superposition. Superposition occurs when two transverse waves 
traveling horizontally in opposite directions combine and produce a third wave that vibrates in a 
vertical direction. Such waves are called standing waves.6 (See Sections 3.1 and 3.3.) The purpose 
of Figure 1.1 is to illustrate the function of tension and mass in the motion of transverse stand-
ing waves. Since the existence of transverse standing waves in strings depends on the presence of 
transverse traveling waves, it follows that particle velocity calculations depend on transverse wave 



2 / PLAIN STRING AND WOUND STRING 
 CALCULATIONS

In Western music, strings constitute the primary source of musical sound. This is a remarkable 
fact because instrument builders encounter serious structural problems when they attempt to tune 
strings over a wide range of frequencies. The laws of vibrating strings clearly demonstrate the dif-
ficulties involved in building stringed instruments with a range of six or more “octaves.” Despite 
these obstacles, piano and harp builders persevered and eventually solved the range problem by 
overwinding plain strings with copper, bronze, and silver wire. Wound strings replace the need for 
extremely long plain strings. Furthermore, because of their rich tone, wound strings are also found 
on narrow range instruments like violins and guitars. To help distinguish between these two differ-
ent kinds of strings and their respective calculations, this chapter is divided into two parts. Part 
I covers plain strings, and Part II, wound strings. In both parts, discussions center on mass per 
unit length, string length, and tension calculations. Finally, we will also consider constructive and 
destructive aspects of the force of tension.

Part I

PlaIn StrIngS

     2.1     

The most commonly cited frequency equation for plain and wound strings is

n 2 /
n T

F
L M u.l.

=

where Fn is the frequency of a given harmonic or mode of vibration, in cycles per second; n is the 
mode number, any positive integer; L is the overall length of a flexible string, in inches; T is the 
tension, in pounds-force (lbf); and M/u.l. is the mass per unit length, in mica per inch. (For a 
definition of the mica mass unit, see Section 1.10.) Since this chapter focuses primarily on the fun-
damental frequencies of strings, we now rewrite this equation to read

 1
1

2 /
T

F
L M u.l.

=  (2.1)

where F1 is the frequency of the first harmonic or the first mode of vibration, in cps.
 The M/u.l. variable in Equation 2.1 does not consist of a simple measurable quantity. Rather, 
it expresses the ratio of a mass to a unit length. For plain strings, mass per unit length calculations 
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28 2. Plain String and Wound String Calculations 

are straightforward, but for wound strings, they are complicated. In either case, the mass per unit 
length ratio deserves special consideration because it appears in several equations. Looking ahead, 
we find the M/u.l. variable in equations for calculating the transverse wave speed1 (cT), the di-
mensionless stiffness parameter2 (J      ), and the characteristic mechanical impedance3 (Zs) of plain 
strings.

     2.2     

Two equations enable us to calculate the M/u.l. variable of plain strings. The first equation states

 /
m

M u.l.
L

=  (2.2)

where m is the total mass of the string, in micas.4 Equation 2.2 requires a highly accurate scale. 
Suppose such a scale indicates that a plain string with a length of 19.25 inches has a weight of 
0.006178 lbf, and therefore a mass of 0.006178 lbm.5 Turn to Appendix B, find the lbm-to-mica 
conversion factor, and make the following conversion:

(0.006178 lbm
1.0 mica

)
386.09 lbm

0.000016002 mica
æ ö÷ç =÷ç ÷÷çè ø

Now substitute the values for m and L into Equation 2.2 and calculate the string’s mass per unit 
length:

0.000016002 mica
/ 0.0000008313 mica/in

19.25 in
M u.l. = =

 Although this technique is mathematically valid, it is not very practical. Given thousands of 
material-and-length combinations, the empirical method of weighing and measuring individual 
string samples is extremely time consuming and expensive. When faced with many stringing pos-
sibilities, musical instrument builders have good reason to do all their mass per unit length calcula-
tions on paper.

     2.3     

The second M/u.l. equation6 for plain strings states

 2/M u.l. r =  (2.3)

where r is the radius of the string, in inches; and  is the mass density, or the mass per unit volume 
of the stringing material, in mica per cubic inch.7 Notice that Equation 2.3 takes into account the 
radius, or the diameter of the string. However, if we examine this equation more closely, it seems 
inappropriate that r   2, the equation for the area of a two-dimensional plane figure (a circle), should 
appear in an equation designed to calculate the mass per unit length of a three-dimensional solid (a 
cylinder). Before we explain the reason for this apparent contradiction in the context of Equation 
2.3, let us reconsider Equation 2.2.
 A plain string has the geometric shape of a cylinder. Placing a string on a scale gives the cyl-
inder’s total mass. As an alternative, the following equation allows us to simply calculate the mass 
of a cylinder:

 cylinderm V=  (2.4)



3 / FLEXIBLE STRINGS

Perfectly flexible strings do not exist. All strings must exhibit a minimum amount of stiffness; 
otherwise, they could not resist the force of tension. However, from a mathematical perspective the 
study of ideal strings is important because some strings have a tendency to behave as though they 
were perfectly flexible. This is especially true for strings that are long, thin, and very flexible. Such 
strings tend to produce higher mode frequencies that are near perfect integer multiples of a funda-
mental frequency. The physical presence of such “harmonics,” and the mathematical language used 
to describe them, have greatly influenced our thoughts, ideas, and opinions about music. Since the 
6th century B.C., when Pythagoras discovered the relationship between vibrating string lengths and 
musical intervals, countless experiments have been conducted and hundreds of treatises have been 
written to explain the nature of vibrating strings and the art of tuning to ratios. Although much of 
this knowledge has great value, it is in the spirit of firsthand experience that we begin our analysis 
in Part I by focusing on traveling waves, standing waves, and simple harmonic motion in strings. We 
then continue in Part II with period and frequency equations of waves in strings; in Part III, with 
length, frequency, and interval ratios of the harmonic series and on canon strings; in Part IV, 
with length, frequency, and interval ratios of non-harmonic tones, also on canon strings; and in 
Part V, with the musical, mathematical, and linguistic origins of length ratios.

Part I

transverse travelIng and standIng waves, and 
sImPle harmonIc motIon In strIngs

     3.1     

When we snap a rubber cord with a single rapid up-and-down motion of the hand, a pulse in the 
shape of a crest will begin to travel along the cord. Two such rapid motions of the hand in quick 
succession produce a sine wave in the shape of a crest and a trough. By definition, a wave (or 
one complete oscillation) consists of a positive (upward) displacement and a negative (downward) 
displacement of the cord. In contrast, a pulse (or one-half oscillation) is a simpler kind of wave 
because it consists only of a single positive or negative displacement. For this reason, we will begin 
the discussion on waves in strings by examining pulses in cords because they are easier to observe 
and illustrate.
 Figure 3.1(a) shows the motion of a pulse as a crest. As it advances, individual particles of the 
cord move in an upward transverse direction at the leading edge of the pulse, and in a downward 
transverse direction at the trailing edge. For a pulse as a trough, Figure 3.1(b) shows that the cord 
particles move downward at the leading edge and upward at the trailing edge. Note carefully that in 
both examples the cord moves vertically up and down as the pulse travels horizontally from left to 
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(a)

(b)

Pulse Direction

Pulse Direction

Figure 3.1  Vertical particle motion of a cord. (a) As a traveling pulse in the shape of a crest moves 
from left to right, vertical arrows indicate an initial upward motion followed by a downward motion 
of particles in the cord. (b) As a traveling pulse in the shape of a trough moves from right to left, 
vertical arrows indicate an initial downward motion followed by an upward motion of particles in 
the cord.

(b)

Incident Pulse
Re ected Pulse

(a)

Figure 3.2  Reflection of a pulse. (a) An incident pulse in the shape of a crest travels from left to 
right. (b) After reflecting from a rigid support, the same pulse in the shape of a trough travels from 
right to left.

Section 3.1



4 / INHARMONIC STRINGS

In Chapter 3, we used Equation 3.13 to calculate the frequencies of string harmonics as exact integer 
multiples of the fundamental frequency. Further discussions focused on the mathematical structure 
of the harmonic series and the subsequent organization of musical ratios. Although integer ratios 
(see Section 3.13) are important to scales and tuning, a detailed examination of vibrating strings 
reveals that exact integer harmonics do not exist. When we multiply a given fundamental frequency 
by a sequence of integers, the result is a series of resonant frequencies that is only theoretically 
correct. On any given string, a true harmonic series could only occur if the string were perfectly 
flexible. Since all strings exhibit varying degrees of stiffness, the flexible string model no longer 
applies. Stiffness causes the modes to vibrate at frequencies considerably higher than suggested by 
Equation 3.13. For this reason, we call the sharp mode frequencies of stiff strings inharmonic mode 
frequencies n( )F , a term that refers to non-integer multiples of the fundamental frequency.
 This chapter consists of three parts. In Part I, we will consider equations for stiffness in plain 
strings; in Part II, equations for calculating coefficients of inharmonicity in cents; and in Part III, 
equations for stiffness in wound strings.

Part I

DetaIleD equatIons for stIffness In PlaIn strIngs

     4.1     

The language used to describe vibrating strings and other kinds of vibrating systems is of special 
interest to this discussion. Figure 3.10 shows the first six modes of vibration of a flexible string, and 
Figure 4.1 shows the first four modes of a stiff string. The term mode refers to the simplest physi-
cal patterns, shapes, or forms a vibrating system is capable of producing. The frequency associated 
with a given mode shape is called the resonant frequency, the natural frequency, or the mode fre-
quency of the system. Within this context, the noun or adjective mode does not define a particular 
kind of pattern or frequency, so that a mode frequency may be either harmonic or inharmonic.
 Regarding perfectly flexible strings, however, we consistently call the mode frequencies harmon-
ics. This term (as in “second harmonic”) has a strict definition: it includes only those frequencies 
that are integer multiples of the fundamental frequency. Mode frequencies of stiff strings are, there-
fore, not included. When describing stiff strings, we should not refer to the frequency of the “second 
harmonic” if we mean the “second inharmonic.” Since the latter term sounds contrived, we will use 
the word mode (as in “frequency of the second mode,” or “second mode frequency”) to correctly 
identify a noninteger or inharmonic frequency.

     4.2     

To understand why the inharmonic mode frequencies of stiff strings sound higher than the har-
monic mode frequencies of flexible strings, recall that for ideal strings,
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
=  (4.1)

where Fn is the mode frequency, in cps; cT is the transverse wave speed, in inches per second; and 
n is the mode wavelength, in inches. Note that the numerator of this equation requires only one 
transverse wave speed, which indicates that in flexible strings cT is constant. This is decidedly not 
the case for stiff strings. The influence of stiffness significantly alters both the mode wave speeds 
and the mode wavelengths of vibrating strings. Therefore, to calculate the inharmonic mode fre-
quencies of stiff strings we must now rewrite Equation 4.1 to state

 n e
n

n e

c
F


= 



 (4.2)

where cn eff is the effective mode wave speed; and n eff is the effective mode wavelength.
 In comparison to flexible strings, the mode wave speeds in stiff strings are not constant. In-
stead, stiffness causes the effective wave speeds to increase with each higher mode of vibration. 
Consequently, no two modes have the same wave speed. Furthermore, in stiff strings the effective 
vibrating length (Leff) is shorter than the measured length of the string. Since for flexible strings, 
n = 2L/n, we find that for stiff strings,

 e
n e

2L
n

 = 
  (4.3)

 Solutions to Equation 4.2 require detailed analyses of the physical properties of strings. A sim-
pler method consists of a purely mathematical approach. This equation states

 2
n 1 2 ( 1)F nF J n= + -  (4.4)

where nF  is the inharmonic mode frequency relative to the fundamental frequency (F      ); J is the 
dimensionless stiffness parameter of the string (see Sections 4.3–4.4); and n is the mode number, 
any positive integer. Equations 4.2 and 4.4 give virtually identical results. In this chapter, we will 
examine the former equation because it focuses on the mechanical aspects of vibrating strings, and 
the latter because it offers convenient solutions.

     4.3     

Mathematicians use a dimensionless stiffness parameter to calculate the influence of stiffness on 
the mode wave speeds, the mode wavelengths, and the mode frequencies of vibrating strings. It is, 
therefore, highly appropriate to start the mechanical analysis of stiff strings with two different equa-
tions for J. The first equation, by Robert W. Young, includes a tension variable;1 and the second, 
by Harvey Fletcher, includes a frequency variable.2 Young’s equation states
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where E is Young’s modulus of elasticity, in pounds-force per square inch, or psi; S is the cross-
sectional area of the string, in square inches; K is the radius of gyration, in inches; T is the tension 
of the string, in pounds-force; and L is the measured length of the string, in inches. Before proceed-
ing, simplify this equation. The variables S and K   2 represent two subequations that include the 
radius (r   ) of the string:
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5 / PIANO STRINGS VS. CANON STRINGS

The problems associated with inharmonic piano strings are far more severe than stretched “octaves” 
tuned 30 ¢ sharp in the treble and 30 ¢ flat in the bass. (See Sections 4.16–4.17.) Stiff strings consti-
tute a primary source of harmonic and melodic dissonance. For this reason, no piano builder has ever 
intentionally increased the inharmonicity of an instrument by installing thick strings. On the con-
trary, all builders design their instruments with the thinnest strings possible. Even so, conventional 
piano strings do not encourage musical exploration and, therefore, do not advance the development 
of acoustic music. Most piano tuning experiments end in failure. Unless the builder understands the 
nature of inharmonically induced dissonance, and attempts to restring a piano with thin strings, the 
authentic rendition of a scale — based on the intervals of the harmonic series — remains in doubt. 
All scales and tunings benefit from flexible strings. Such strings are ideal because they produce truer 
harmonics and, thereby, minimize the obliterating effects of excessive inharmonicity.
 If inharmonicity is not just an obscure technical subject, then the musical question arises: “Why 
are the dimensionless stiffness parameters (J        ), or the coefficients of inharmonicity ( )¢ , of typical piano 
strings so high?” (See Table 4.1.) In a word, the answer is “Power!” Since the early 18th century 
when Bartolomeo Cristofori (1655–1730) built his first gravicembalo col piano e forte, or harpsichord 
with soft and loud, the primary goal of all builders consisted of a single-minded determination to 
make the grand piano as loud as humanly possible. At the beginning of the 20th century, this pro-
cess came to an inevitable end. To understand why instrument builders could not make the piano 
any “grander,” we must discuss three fundamental concepts of the physics of stringed instruments: 
(1) the transfer of energy from strings to soundboard and into the surrounding air; (2) the mechani-
cal wave impedances of strings and soundboards, and the radiation impedance of air; and (3) the 
phenomenon of dispersion in soundboards. We will explore these subjects in Parts I–IV, and in Part 
V, examine how piano tuners tune intervals to the beat rates of coincident string harmonics. Finally, 
in Part VI a mathematical analysis will demonstrate the musical advantages of thin strings and thin 
soundboards. In short, while thick strings and thick soundboards produce very loud sounds, these 
heavy mechanical components severely restrict the intonational possibilities of all modern pianos.

Part I

transmIssIon and reflectIon of mechanIcal 
and acoustIc energy

     5.1     

Sound production in a piano may be traced by way of an energy chain that begins when a finger 
delivers a force of sufficient magnitude to depress a key. The mechanical energy resulting from this 
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force is then transferred through the key to the action levers, to the hammer, to the string(s), and 
finally to the soundboard. Here mechanical energy is transformed and radiated as acoustic energy 
(sound waves) into the surrounding air. From finger to soundboard, every link in this chain is as-
sociated with a force, and the amount of energy in the system (how loud or soft the piano sounds 
at any given time) is directly proportional to the magnitude of these forces.
 However, to produce loud sounds, generating large forces is not enough. The amplification of 
sound is also dependent on an efficient displacement of large amounts of air. A vibrating string or 
tuning fork radiates only small amounts of sound because the surface area of either object displaces 
very little air. When the same string or tuning fork contacts a soundboard or table top, and trans-
fers its vibrational energy to a larger surface, the radiation of sound increases dramatically. Sud-
denly, upon contacting a large structure, a faint sound becomes clearly audible from a distance. For 
pianos, both the initial intensity (how loud or soft the strings will sound) and the ensuing duration 
(how long or short the strings will continue to vibrate) depend not only on the forces of the energy 
chain, but also on the critical rate at which vibrational energy is transferred from the strings to 
the soundboard. Consequently, if the string-to-soundboard proportion is incorrect, no amount of 
pounding (forcing) will contribute to the desired dynamic range.

     5.2     

Consider for a moment two extremely different situations that illustrate how a wave either trans-
mits most of its energy (with intensity and no duration), or reflects most of its energy (with dura-
tion and no intensity) at the boundary between the string and the soundboard. In the first example, 
a string is coupled over a bridge to a very thin wood plate designed to move as though it were a 
physical extension of the string. A wave traveling on the string would barely notice the boundary, 
and would transmit most of its energy (without significant reflection) at the bridge. As a result, the 
plate would respond to this rapid transfer of vibrational energy with a loud (but brief) pitchless 

Section 5.2

figure 5.1  Particle and phase velocities in solids and fluids. (a) In solids, the particle velocity (u   ) 
is perpendicular to the phase velocity (v   ). In this chapter, the phase velocity refers to the speed 
of transverse waves in strings (cT), or the speed of transverse bending waves in soundboards (cB).  
(b) In fluids, the particle velocity is parallel to the phase velocity. Here the phase velocity refers to 
the speed of longitudinal sound waves in air (cL). See Sections 5.14–5.15 for detailed descriptions on 
the speed (c   ) of waves. In either case, the particle velocity is associated with the amplitude, while the 
phase velocity is associated with the frequency of a wave.

(b)

(a)

Particle Velocity Phase Velocity

Phase VelocityParticle Velocity



6 / BARS, RODS, AND TUBES

On first impression, it seems that marimbas, orchestral chimes, mbiras,1 and harmonicas do not 
have many common properties. From a mathematical perspective, however, musical instruments 
made from bars, rods, or tubes fall into two principal groups. The first group consists of bars, rods, 
or tubes that are free at both ends. All the instruments in the free-free group are percussion in-
struments such as marimbas, xylophones, vibraphones, celestas, gamelan bars, orchestra bell bars, 
glockenspiels, bell lyras, orchestral chimes, metal tubes,2 solid rods,3 and tuning forks.4 The second 
group consists largely of bars and reeds clamped at one end. The instruments in this group are 
either percussion instruments or wind instruments because some are played with mallets or fingers, 
whereas others are driven with compressed air. Percussion instruments in the clamped-free group 
include mbiras, slit drums, music boxes, and jaw’s harps; wind instruments include reed organ 
pipes, accordions, harmonicas, harmoniums, and concertinas.
 A mathematical classification is important because it emphasizes the acoustical similarities 
among different kinds of musical instruments. For example, all the instruments in the free-free 
group produce identical mode shapes; this also applies to the clamped-free group. Consequently, the 
principles and techniques used to tune rosewood marimba bars and aluminum tubes are the same; 
similarly, the tuning techniques of steel mbira keys and brass harmonica reeds are also the same. 
Because there are more similarities than differences in the frequency equations and mode shapes 
of the objects belonging to either group, the phrase “bars, rods, and tubes” will appear only when 
appropriate. Future discussions will primarily focus on free-free bars and clamped-free bars with 
the understanding that rods and tubes are included as well.
 Because of the overall complexity of this subject, and some significant differences between free-
free bars and clamped-free bars, this chapter is divided into four parts. Part I examines frequency 
equations, mode shapes, and restoring forces of free-free bars, and Part II gives a detailed descrip-
tion of free-free bar tuning techniques. Part III examines the frequency equations, mode shapes, 
and restoring forces of clamped-free bars, and Part IV gives a brief description of clamped-free bar 
tuning techniques.

Part I

frequency equatIons, mode shaPes, and
restorIng forces of free-free bars

     6.1     

Stiff strings, soundboards, and bars have one common property: a restoring force due to stiffness. 
When an object vibrates under the influence of stiffness, two important characteristics come to mind. 
(1) In strings, stiffness causes increases in the speed of transverse waves (cT), and in soundboards 
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148 6. Bars, Rods, and Tubes

and bars, stiffness causes increases in the speed of transverse bending waves (cB). (2) As a result of 
such increases in mode wave speeds, these vibrating systems produce mode frequencies that do not 
form a harmonic series. We call such frequencies inharmonic mode frequencies because they are not 
integer multiples of a fundamental frequency.
 The general topic of increasing mode wave speeds falls under the subject known as dispersion. 
This phenomenon received a great deal of attention in Sections 4.8 and 5.14. The reader should 
read, study, and absorb this material because it is essential for a thorough understanding of vibrat-
ing bars. Bars are extremely dispersive; here stiffness acts as the only restoring force that returns a 
vibrating bar to its equilibrium position. However, there exists an important difference between stiff 
strings and ribbed soundboards on the one hand, and bars on the other. Only in bars are tuners of 
percussion instruments able to methodically change the restoring force due to stiffness and, thereby, 
intentionally tune the inharmonic modes to a wide variety of alternate frequencies.

     6.2     

The frequency equation for a slender, uniform, isotropic bar, rod, or tube free at both ends states5
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 (6.1)

where Fn is the mode frequency of transverse vibrations, in cps; E is Young’s modulus of elastic-
ity of the material, in pounds-force per square inch, or psi;  is the mass density, or mass per unit 
volume of the material, in mica per cubic inch;6 L is the length of the object, in inches; qn is a di-
mensionless bar parameter; and K is the radius of gyration of the object, in inches. In Section 6.7, 
turn to Table 6.1, find K for bars, and rewrite Equation 6.1 to read
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 (6.2)

where h is the height or thickness of the bar, in inches.
 The dimensionless bar parameter depends on the end conditions of the bar and on the mode of 
vibration.7 Although rational approximations q2 » 5, q3 » 7, . . . seem justified, the exact values of 
qn represent irrational numbers.8 Therefore, none of the higher mode frequencies of free-free bars 
are true harmonics. (See Equation 3.13.) Instead, all the modes consist of inharmonic frequencies 
not found in the harmonic series. The following frequency ratios define the relations between the 
fundamental frequency and the frequencies of the second, third, and fourth modes:
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7 / ACOUSTIC RESONATORS

Vibrating bars do not radiate sound very efficiently. To amplify the radiation of sound from bars, 
instrument builders mount tuned acoustic resonators underneath the bars of marimbas, xylophones, 
and vibraphones.1 Acoustic resonators fall into two categories. The most common type consists of a 
straight cylindrical tube made of bamboo, metal, or plastic that is open at the top end and closed 
on the bottom end. Length and frequency equations for tube resonators are easy to understand, and 
building a set of such resonators is not very difficult. The other kind of acoustic resonator consists 
of a regularly or irregularly shaped cavity.2 On African marimbas and xylophones one frequently 
finds hollow spherical or tubular gourd resonators, and on central American marimbas, flared pyra-
midical resonators made of wood.3 Although the mathematics of cavity resonators are far more 
complicated than the mathematics of tube resonators, building and tuning such resonators does 
not require a detailed knowledge of complex equations. Instead, to construct such resonators, all 
one needs is a basic knowledge of cavity resonator mechanics, coupled with patience, experience, 
and a little bit of luck.
 Since the acoustic principles of these two types of resonators are very different, this chapter 
consists of two different areas: Parts I–VI cover tube resonators, and Parts VII–VIII cover cavity 
resonators. Furthermore, because vibrating air columns in narrow tubes constitute the principal 
sound-producing systems of flutes, Parts I–VI also serve as an essential introduction to Chapter 8. 
Included in this discussion will be the propagation of longitudinal traveling waves or sound waves 
in the surrounding air and in tubes, the reflection of longitudinal traveling waves at the open and 
closed ends of tubes, the acoustic impedances of tubes and rooms, and the formation of pressure 
and displacement standing waves in tubes. Readers who need immediate access to tube resonator 
equations should refer to Section 7.11, which cites length and frequency equations for tubes open at 
both ends (called open tubes), and tubes open at one end and closed on the other end (called closed 
tubes). Also, Section 7.12 includes three important practical considerations for anyone interested in 
building tube resonators.

Part I

sImPle harmonIc motIon of longItudInal
travelIng waves In aIr

     7.1     

The single most important motion associated with the vibrations of all acoustic musical instru-
ments is called simple harmonic motion. SHM describes the periodic motion of a particle in a solid, 
liquid, or gas as it vibrates in a linear direction about its equilibrium position. To observe SHM in 
a string, return for a moment to the slow motions of a flexible cord in Figure 3.5. The positions of 
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the arrows indicate that in one second, every crest and trough advances the distance of one wave-
length () to the right. Furthermore, the position of a given dot in each frame illustrates that every 
displaced particle in the cord undergoes simple harmonic motion. That is, each particle moves in 
a linear positive direction above its equilibrium position, and in a linear negative direction below 
its equilibrium position. This kind of disturbance is called a transverse traveling wave because the 
direction of particle motion is perpendicular to the direction of wave propagation.4

 Now, if one plucks a stretched string fixed at both ends, the string’s fundamental mode of vibra-
tion will produce a transverse standing wave pattern5 as shown in a sequence of nine string displace-
ments along the left edge of Figure 7.1. Such a disturbance causes a compression of air particles in 
front of the string’s leading surface, and a rarefaction of air particles behind the string’s trailing 
surface. By definition, a compression is an area of positive pressure or high molecular density, and a 
rarefaction is an area of negative pressure or low molecular density. Again, notice that the positions 
of the arrows in each frame show that for a frequency of 1.0 cps, every center of compression and 
rarefaction advances the distance of one wavelength per second to the right. Moreover, the loca-
tions of circles around a given air particle indicate that every particle undergoes SHM. A particle 
near a compression moves in a forward or positive direction to the right, and near a rarefaction, 
in a backward or negative direction to the left. Therefore, positive pressure causes a propulsion 
of air particles in the forward direction, and negative pressure causes a suction of air particles in 
the backward direction. Note again that only the acoustic energy associated with the disturbance 
travels in the direction of wave propagation. 
 A close examination of SHM shows that when t = 0 s, the marked particle in Figure 7.1 is pass-
ing through the equilibrium position. At this location, the particle has maximum velocity. When t = 
Z\, s, the particle is moving in the positive direction, and at t = Z\v s, it reaches maximum positive 
displacement. Here the velocity = 0. When t = C\, s, the particle is now moving in the negative direc-
tion. At t = Z\x s, the particle again passes through the equilibrium position. Now, observe the follow-
ing unique feature of a longitudinal traveling wave. When a particle passes through the equilibrium 
position, and moves in the same direction as the longitudinal wave, it is located at the center of a 
compression. This occurs when t = 0 s, t = 1.0 s, t = 2.0 s, etc. Conversely, when a particle passes 
through the equilibrium position, and moves in the opposite direction of the longitudinal wave, it 
is located at the center of a rarefaction. This occurs when t = Z\x s, t = 1Z\x s, t = 2Z\x s, etc. When 
t = B\, s, the particle continues its movement in the negative direction, and at t = C\v s, it reaches 
maximum negative displacement. Here again, the velocity = 0. Finally, when t = M\, s, the particle 
is now moving again in the positive direction, and at t = 1.0 s, it returns to the same position as in 
the first frame. This position marks the beginning of the next cycle.
 We may also view this motion by looking straight down onto the page. Imagine the nine marked 
particles in the pathway of a pendulum bob as it swings back and forth between the left and right 
margins of the page. Note, therefore, that only the mechanical energy associated with the distur-
bance travels in the direction of wave propagation. The particles of the medium do not travel, but 
simply oscillate about their respective equilibrium positions. This kind of disturbance is called a 
longitudinal traveling wave or sound wave because the direction of particle motion is parallel to the 
direction of wave propagation.
 Let us now examine a spring-mass system designed to demonstrate simple harmonic motion. 
Figure 7.2 shows that such a system consists of two distinct parts: a spring or elastic component 
that restores the system to its equilibrium position, and a mass or inertial component that causes 
the system to overshoot its equilibrium position.6 Aspects of these two mechanical or acoustical 
components belong to all vibrating systems. Scientists refer to the spring-mass system as a lumped 
system because both parts exist independently of each other. In contrast, most vibrating systems 
and musical instruments are called distributed  7 or continuous  8 systems because a clear physical 
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8 / SIMPLE FLUTES

Flutes, harps, and drums are the oldest musical instruments created by man. Wind instruments 
are unique, however, because they alone embody the physical dimensions of scales and tunings. 
In a work entitled The Greek Aulos, Kathleen Schlesinger (1862–1953) attempted to reconstruct 
Greek music theory by analyzing the remains of ancient reed flutes.1 It is possible to approach the 
subject of flute tunings from two different perspectives. We may predict the tuning of an existing 
instrument by first measuring various flute bore, embouchure hole, and tone hole dimensions, and 
then substituting these data into a sequence of equations. This method provides convenient solu-
tions when a flute is extremely fragile and cannot be played, or is simply not available for playing. 
On the other hand, we may realize a given tuning by making a flute according to another sequence 
of equations. From a mathematical perspective, these two approaches are distinctly different and 
require separate discussions.
 As all experienced flute players know, the intonation of a transverse flute — with either a very 
simple or a very complex embouchure hole — depends not only on the precision of instrument con-
struction, but also on the performer. The mathematics of flute tubes, embouchure holes, and tone 
holes does not necessarily produce an accurate sounding instrument. The intonation of a flute is 
also governed by the strength of the airstream, and by the amount the lips cover the embouchure 
hole. Because these two variables exist beyond the realm of mathematical predictability, they de-
pend exclusively on the skill of the performer.
 Due to the overall complexity of flutes, this chapter is divided into three parts. Part I investi-
gates equations for the placement of tone holes, and Part II, mathematical procedures required to 
analyze existing flutes. Since Part II is unintelligible without a thorough understanding of Part I, 
the reader should study this chapter from beginning to end. Finally, Part III gives some suggestions 
on how to make very inexpensive yet highly accurate simple flutes.

Part I

equatIons for the Placement of tone holes on
concert flutes and sImPle flutes

     8.1     

In writing this chapter, I am indebted to Cornelis J. Nederveen. In his book entitled Acoustical 
Aspects of Woodwind Instruments,2 Nederveen carefully defines all the mathematical variables 
needed for a thorough investigation into woodwind acoustics. Numerous tables of woodwind instru-
ment dimensions are included at the end of the book. Because a full description of flute acoustics 
requires many different variables, this discussion begins with a list of symbols originally defined by 
Nederveen. Since most of these symbols appear only in this chapter, they are not included in the 
List of Symbols at the beginning of this book. Furthermore, the List of Flute Symbols below gives 
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seven symbols that do not appear in Nederveen’s book: effective length LB(h) replaces H; effective 
length LB(e) replaces E; correction E replaces LB(e) in the context of flute length calculations; 
corrections H and T, and length T, represent simplifications. Finally, LA replaces LS when, in 
predicting the frequencies of an existing flute, we cannot determine LS, which represents an exact 
acoustic half-wavelength; in this context, we must calculate LA, which represents an approximate 
acoustic half-wavelength. In preparation for Chapter 8, the reader should read, study, and absorb 
Chapter 7. Knowledge of longitudinal pressure waves and end correction terminology is essential for 
an understanding of flute acoustics.

LIST OF FLUTE SYMBOLS

d1 Bore diameter at tone hole.

d0 Bore diameter at embouchure hole.

dH Tone hole diameter.

dE Embouchure hole diameter.

SE Surface area of embouchure hole.

S0 Surface area of bore at embouchure hole.

H Geometric or measured length (or height) of tone hole; that is, (1) the shortest distance of 
a tone hole chimney on a concert flute with key pads, or (2) the wall thickness of a simple 
flute without key pads.

LH Acoustic or effective length of tone hole. (See Note 13.)

LB(h) Acoustic or effective length of bore at tone hole. (Nederveen: H, p. 64.)

E Geometric or measured length of embouchure hole.

LE Acoustic or effective length of embouchure hole. (See Note 13.)

LB(e) Acoustic or effective length of bore at embouchure hole. (Nederveen: E, p. 26.)

 Correction coefficient.

E Approximate correction at embouchure hole. In principle, the same as LB(e). Although E 
does not have an exact mathematical value, E is always greater than LB(e). 

H Correction at tone hole. (Nederveen: LX, p. 13; and zLS, p. 48.)

T End correction at open tube end: 0.3d1. (Nederveen: a, p. 27.)

K Correction at key pad. (Nederveen: d, p. 64.)

h Geometric or measured distance of key pad in the open position above the center of a tone 
hole.



9 / THE GEOMETRIC PROGRESSION,
 LOGARITHMS, AND CENTS

Cent calculations provide a highly accurate method to measure the relative sizes of musical inter-
vals. Equation 9.21 shows a convenient method for computing cent values on calculators equipped 
with LOG keys. However, because texts on music theory and musical instrument construction sel-
dom discuss logarithms and cents in full detail, many aspects of this analytical technique remain 
obscure. Furthermore, technical difficulties often occur because instrument builders, music theo-
rists, and ethnomusicologists utilize different kinds of numerical notation to record their data. For 
example, suppose a researcher gives an Indonesian 7-tone pélog scale in cents, and a flute maker 
wants to build an instrument in that tuning. This problem raises the inevitable question, “How 
does one convert cents into decimal ratios?” Or, a piano tuner who wants to increase the pitch of 
an instrument might ask, “What changes in frequency and, therefore, in string tension will occur 
if I raise A4-440.0 cps by 25 ¢?” Answers to these and other related questions require thorough 
investigations into logarithms and cents. Once achieved, such a study provides a powerful tool for 
understanding many different tuning systems throughout the world.
 In preparation for this chapter, the reader should read, study, and absorb the following topics 
discussed in Chapter 3: (1) the mathematical structure of the harmonic series, (2) the distinctions 
between ancient length ratios, modern length ratios, frequency ratios, and interval ratios, and (3) 
the mathematical methods used in the division of canon strings. In Part I of this chapter we will 
discuss human perception of the harmonic series as a geometric progression; in Part II, logarithmic 
processes in mathematics and human hearing; in Part III, the derivation and application of cent 
calculations; and in Part IV, logarithmic equations for the placement of guitar frets, and for the 
construction of musical slide rules.

Part I

Human PercePtIon of tHe HarmonIc serIes
as a geometrIc ProgressIon

     9.1     

We begin this discussion by considering two fundamental mathematical sequences: the arithmetic 
progression, and the geometric progression. Because these two progressions have profound and far-
reaching consequences, we will encounter them in many different contexts.
 One may write an arithmetic progression by beginning with a given number a, and then repeat-
edly adding a constant number d. For example, the following sequence:

2,  5, 8, 11, 14
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254 9. The Geometric Progression, Logarithms, and Cents

is an arithmetic progression in which d = 3. Since d represents a difference between consecutive 
terms, it is called the common difference (c.d.) of an arithmetic progression. A general expression 
for an arithmetic progressions states

, + , + 2 , + 3 , . . .a a d a d a d

 One may write a geometric progression by beginning with a given number a, and then repeat-
edly multiplying by a constant number r. For example, the following sequence:

2, 6, 18, 54, 162

is a geometric progression in which r = 3. Since r represents a ratio between consecutive terms, it 
is called the common ratio (c.r.) of a geometric progression. A general expression for a geometric 
progression states

2 3, , ,  , . . .a ar ar ar

Notice that the exponents of a geometric progression form an arithmetic progression, where c.d. = 
1. Also, observe that the former arithmetic progression has a uniform increase (3, 3, 3, 3) between 
terms, while the latter geometric progression has a varied increase (4, 12, 36, 108) between terms.

     9.2     

A mathematical and a musical examination of Figure 9.1 shows that we may interpret the harmonic 
series as an arithmetic progression or as a geometric progression. The arithmetic progression con-
sists of a simple sequence of harmonics numbered 1, 2, 3, . . . which continues theoretically to infin-
ity. Each harmonic generates a frequency that is an integer multiple of the fundamental frequency. 
So, if the first harmonic of a flexible string,1 or an open column of air,2 produces C2 at 65.0 cps, 
then the first five harmonics of this arithmetic progression generate frequencies

65.0 cps, 130.0 cps, 195.0 cps, 260.0 cps, 325.0 cps

65.0 cps
B\v

65.0 cps
X\z

65.0 cps
V\c

65.0 cps
C\x

Although the harmonics of this particular arithmetic progression have a common difference, where 
c.d. = 65.0 cps, the human ear cannot identify a recurring interval pattern between the consecu-
tive tones of the harmonic series. Figure 9.1 shows that with increases in frequencies, the intervals 
between harmonics never repeat, and simply become progressively smaller. Consequently, the har-
monic series as an arithmetic progression is musically meaningless!
 In contrast, when a sequence of frequencies forms a geometric progression, the human ear can 
identify a recurring interval pattern between tones. The underlined harmonics below constitute 
such a progression: 

 , , 3, , 5, 6, 7, , 9, 10, 11, 12, 13, 14, 15, , 17, . . .1 2 4 8 16  (i)

Upon hearing these five harmonics, musicians recognize four identical musical intervals. Again, if 
the first harmonic C2 vibrates at 65.0 cps, then the underlined harmonics of the latter geometric 
progression generate frequencies

 65.0 cps, 130.0 cps, 260.0 cps, 520.0 cps, 1040.0 cps

65.0 cps
X\z

130.0 cps
X\z

260.0 cps
X\z

520.0 cps
X\z

 (ii)



10 / WESTERN TUNING THEORY
 AND PRACTICE

Approximately 2500 years ago, the semi-legendary Greek philosopher and mathematician Pythago-
ras (c. 570 B.C. – c. 500 B.C.) reputedly discovered the crucial nexus between sound and number. 
Since that time, numbers in the form of ratios enabled musicians to accurately control the tuning 
of their instruments, and provided mathematicians with a means to analyze and classify new scales 
and tunings. The numeration of music presented common ground to musicians and mathemati-
cians, and inspired a rich tradition of cooperation and controversy that lasted well into the 18th 
century. Unfortunately, for the last two hundred years, a tendency toward specialization in the arts 
and sciences produced a deep chasm between music and mathematics. Due to the universal stan-
dardization of 12-tone equal temperament, and a coexisting lack of development in the construc-
tion of new musical instruments, recent generations of musicians have shown very little interest in 
mathematics. As a result, the history of music in the West since the time of the ancient Greeks con-
sists largely of an innocuous recounting of “music theory.” However, since one cannot intelligently 
discuss music theory without confronting the subject of consonance and dissonance, and since the 
latter topic has its roots in polemics over scales and tunings, the exclusion of mathematics from 
music constitutes a deplorable aberration at best. Only a mathematical approach to music brings 
to full consciousness the possibilities of consonances and dissonances not yet heard. This in essence 
is the legacy of the Greek mathematician and astronomer Claudius Ptolemy (c. A.D. 100 – c. 165). 
In the Harmonics, Ptolemy continuously demonstrates to his reader that the ancient synthesis 
of music and mathematics inculcates an inner capacity for diversity, and encourages verification 
through experimentation.
 The subject of tuning theory and practice is truly vast and could easily fill a half-dozen volumes. 
To help organize and limit the discussion, this chapter is divided into six parts. Part I analyzes 
formal mathematical definitions of four different types of numbers; Part II, Greek classifications 
of musical ratios, tetrachords, scales, and modes; Part III, arithmetic and geometric divisions on 
canon strings; and Part IV, scales by Philolaus, Euclid, Aristoxenus, and Ptolemy. In Table 10.12, 
Ptolemy’s Catalog of Scales also includes tunings by Archytas, Eratosthenes, and Didymus. The 
remaining parts focus on two areas in the recent history of Western tuning: Part V covers tempered 
tunings, and Part VI, just intoned tunings.
 Chapters 3 and 9 are indispensable to an understanding of this chapter. As discussed in Chapter 
3, the reader should know: (1) the mathematical structure of the harmonic series, (2) the distinc-
tions between ancient length ratios, modern length ratios, frequency ratios, and interval ratios, and 
(3) the mathematical methods used in the division of canon strings. Furthermore, as discussed in 
Chapter 9, the reader should also know: (1) the distinction between an arithmetic progression and 
a geometric progression, (2) the procedure by which the human ear “adds” and “subtracts” musi-
cal intervals, and why this is equivalent to the multiplication and division of ratios, and (3) how to 
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convert length ratios and frequency ratios into cents. Furthermore, as discussed in Sections 9.2–9.3, 
9.8, and 9.13, the reader should also fully understand the intellectual and mathematical processes 
that make all equal temperaments, and in particular 12-tone equal temperament, possible. In 
summary, the intellectual process states that in the context of the harmonic series, the human ear 
identifies interval patterns according to geometric progressions, and it recognizes a single musical 
interval by its signature interval ratio. The mathematical process states that geometric progres-
sions, frequency ratios, and interval ratios are governed by operations of multiplication and divi-
sion. Therefore, with respect to 12-tone equal temperament, a geometric division of ratio X\z into 
1200 equal parts requires the extraction of the twelve-hundredth root of 2.
 A simple canon with six or more strings and moveable bridges (see Chapter 13) is an essential 
tool for a musical understanding of this chapter, but not a requirement for intellectual comprehen-
sion. Perhaps some day the discussions in this chapter will inspire a reader to build such an instru-
ment.

Part I

defInItIons of PrIme, comPosIte, ratIonal,
and IrratIonal numbers

     10.1     

The numbers that constitute musical ratios are called real numbers. Real numbers consist of both 
rational and irrational numbers. A rational number is defined as the quotient of two integers. With 
respect to scales and tunings, the integers that constitute musical ratios are classified as positive 
natural numbers, which include all odd numbers, even numbers, and prime numbers. Therefore, by 
definition, ratios such as A\s, where variables x and y represent positive integers, are called integer 
ratios.
 Definition 1. A prime number is an integer whose only divisors are itself and 1. For example, 
3 is a prime number because only 3 and 1 divide this number without a remainder. The first ten 
prime numbers are

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, . . .

Note that 1 is not a prime number,1 and that 2 is the only even prime number.
 Definition 2. An integer greater than 1 that is not a prime number is called a composite number. 
The first ten composite numbers are

4, 6, 8, 9, 10, 12, 14, 15, 16, 18, . . .

All composite numbers may be factored into prime numbers. To determine the prime factors of a 
composite number, divide the number by primes until the result is a prime. For example, the fol-
lowing factorization:

42 6
6, = = 2

7 3

reveals that composite number 42 is a product of prime numbers 7 ´ 3 ´ 2.
 A factorization into primes enables one to understand the numerical and musical structure of a 
ratio. Consider the factorization

4 = 2
2

Section 10.1



11 / WORLD TUNINGS

When Westerners speak of music as a universal language, they more than likely think of a sym-
phony orchestra performance in China or Japan, or some other musical product exported from 
the occident to the orient. Long before I began writing this book, I envisioned discussing Chinese, 
Indonesian, Indian, and Arabian tuning theory in the same breath as Greek and Renaissance tun-
ing theory. Why not? Music is a universal language not only because human beings have ears and 
a desire to make music, but also because people all over the world cultivate and investigate the 
subject of musical mathematics.
	 Most	listeners	to	whom	“foreign”	music	sounds	“funny”	never	get	past	a	first	impression	because	
they	lack	the	artistic	and	scientific	tools	to	analyze	their	initial	response.	If	prejudice	is	the	expres-
sion of personal opinion without a consideration of facts, then understanding is the expression of 
personal opinion based on a willingness to consider facts. In this context, a factual examination of 
another	civilization	may	lead	to	the	following	questions:	When	a	Chinese	musician	tunes	the	strings	
of a ch’in, and when a European musician tunes the strings of a harpsichord, how are these two 
tunings	alike,	and	how	are	they	different?	However,	such	comparisons	alone	do	not	meet	the	require-
ments for true understanding. One must also ask, “Does an examination of facts further the experi-
ence	of	listening	to	music	from	distant	civilizations?”	If	your	answer	is	“yes,”	then	read	on.
	 The	reading	requirements	for	Chapter	11	are	the	same	as	outlined	at	the	beginning	of	Chapter	
10.	The	reader	should	also	study	Sections	10.1–10.2,	and	know	the	definitions	of	prime	numbers,	
composite	numbers,	 rational	 numbers,	 and	 irrational	 numbers.	However,	 a	 complete	 reading	 of	
Chapter	 10	 is	not	 required.	Throughout	Chapter	 11,	 I	have	 intentionally	 avoided	 references	 to	
Western tuning and music theory wherever possible. Finally, this chapter consists of four parts. 
Part I examines Chinese music; Part II, Indonesian music; Part III, Indian music; and Part IV, Ara-
bian, Persian, and Turkish music. Due to the vastness of these subjects, I have selected only a few 
basic	concepts	from	each	civilization.	Without	these	considerations,	no	fundamental	understanding	
is possible.

Part I

CHINESE MUSIC

     11.1     

Of the texts that have survived, the earliest detailed description of Chinese tuning practice exists 
in a book entitled Lü-shih ch’un-ch’iu (The Spring and Autumn of Lü Pu-wei), written c. 240 B.C.1 
According	to	this	narrative,	the	semi-legendary	emperor	Huang	Ti	(fl.	c. 2700 B.C.) ordered music 
master	Ling	Lun	to	cast	a	set	of	sixty	bells,	and	to	tune	them	in	twelve	sets	of	five	bells	each.	To	
accomplish this task, Ling Lun used the original 12-tone scale, where each scale degree provided 
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him with a fundamental tone from which to tune the original pentatonic scale. The oldest extant 
source that gives detailed calculations for this 12-tone scale is a book by Ssu-ma Ch’ien (c. 145 B.C. – 
c. 87 B.C.) entitled Shih Chi (Records of the Historian), written c. 90 B.C.2	Here,	Ssu-ma	Ch’ien	cites	
the famous formula

San fen sun i fa: Subtract and add one-third.3

for the calculation of 12 pitch pipe lengths. An ancient pitch pipe consists of a tube closed at one 
end. One plays a pitch pipe like a panpipe by blowing across the open end of the tube. Ssu-ma 
Ch’ien’s	formula	works	equally	well	for	string	lengths.	Equations	7.18	and	3.10	indicate	that	these	
two	vibrating	systems	are	very	similar.	The	former	equation	states	that	the	theoretical	wavelength	
of	the	fundamental	tone	of	a	closed	tube	equals	four	times	the	length	of	the	tube;	and	the	latter	
equation,	that	the	theoretical	wavelength	of	the	fundamental	tone	of	a	string	equals	two	times	the	
length	of	the	string.	However,	because	the	frequencies	of	tubes	are	affected	by	end	corrections,4 lip 
coverage at the embouchure hole,5 and the strength of a player’s airstream,6 the following discussion 
will	focus	on	strings;	the	frequencies	of	the	latter	are	easier	to	predict	and	control.	Furthermore,	
since Ssu-ma Ch’ien based his calculations on a closed tube 8.1 units long,7 and since fractional 
lengths are inconvenient, we will use an overall string length of 9 units. This length occurs in many 
historical texts, including a work entitled Lung-yin-kuan ch’in-p’u by Wang Pin-lu (1867–1921). 
Pin-lu’s	student,	Hsü	Li-sun,	edited	and	renamed	this	manuscript	Mei-an ch’in-p’u, and published 
it in 1931. Fredric Lieberman translated the latter in his book A Chinese Zither Tutor.8 We will 
refer to this work throughout Sections 11.5–11.7.

     11.2     

The ancient formula subtract and add one-third consists of two mathematical operations that have 
opposite	effects.	Subtraction	of	a	string’s	Z\c length yields variable Lshort, and addition of a string’s 
Z\c length yields variable Llong.	However,	in	the	context	of	scale	calculations,	one	may	obtain	identi-
cal results through the following operations of division and multiplication. (1) The act of subtract-
ing Z\c from a string’s vibrating length (L  )	is	equivalent	to	dividing	L by ancient length ratio C\x, or 
multiplying L by modern length ratio X\c:

short
2

3 33
2

L L
L L L= - = = ´

(2) The act of adding Z\c	to	a	string’s	decreased	length	is	equivalent	to	multiplying	Lshort by ancient 
length ratio V\c:	

short
long short short

4
3 3

L
L L L= + = ´

(3)	Similar	to	the	first	operation,	the	act	of	subtracting	Z\c from a string’s increased length is equiva-
lent to dividing Llong by ancient length ratio C\x, or multiplying Llong by modern length ratio X\c:

long long
short long long

2
3 33

2

L L
L L L= - = = ´

For a string 9.0 units long, Table 11.1 shows that the Chinese up-and-down principle of scale gen-
eration	produces	string	lengths	accurate	to	five	decimal	places.



Part II

INDONESIAN MUSIC

Java

     11.12     

Indonesia consists of an archipelago of three thousand islands scattered throughout the Indian 
Ocean in Southeast Asia. It is the birthplace of gamelan music. Gamelan orchestras, composed of 
many low-lying and stationary musical instruments arranged in rectangular or circular patterns, 
bring to mind unique islands of sound. Gamelan music defies standard mathematical analysis be-
cause among the thousands of orchestras that exist in Indonesia, no two are alike. For unknown 
reasons, the tradition of monochord division did not flourish in Indonesia, and consequently tuning 
theory did not evolve as a branch of mathematics. Instead, the subject of musical mathematics 
developed on a purely experiential basis. Each village and town has its own individual sound, and 
for a given gamelan, professional gamelan makers tune their instruments, without the benefit of 
acoustic or electronic devices, to within a few cents of a desired scale. Given the inharmonic mode 
frequencies of vibrating bars1 and gongs, such precision in the tuning of percussion instruments 
constitutes a remarkable scientific and musical achievement.
 Gamelans on the islands of Java and Bali are tuned to two basic scales, or laras, called sléndro 
and pélog. Musicians East and West write gamelan music in cipher notation, which consists of 
a progression of integers that represent the tones of a piece composed in either sléndro or pélog. 
Unfortunately, unless one understands the idiosyncrasies of this notation, it is extremely easy to 
misinterpret the pitches of gamelan tunings. Before we discuss this subject in full detail, let us first 
review the cipher notation in Section 11.5 and Figure 11.2. Many scholars record the original Chi-
nese pentatonic scale by writing 1–2–3–5–6–1, where the last digit represents a tone an “octave” 
above the first digit. Figure 11.3 shows that this technique has its origins in the Chevé System,2 
which uses numbers 1 through 7 to identify the sequential tones of the standard Western diatonic 
scale. For a tone an “octave” above a given pitch, the cipher-dot notation requires a dot above a 
cipher, and for a tone an “octave” below a given pitch, a dot below a cipher; similarly, it requires 
two dots above or below a cipher for a tone two “octaves” above or below a given pitch. When one 
compares the pitches of the original Chinese pentatonic scale to five select pitches of the Western 
diatonic scale, the sequence 1–2–3–5–6–1 represents the Chinese scale fairly well.

1 2 3


   

Original Chinese pentatonic scale: >\, <Z\nvZ\z C\x X\zXM\zn
Original Chinese pentatonic scale in cents: 0 203.9 702.0407.8 905.9 1200.0


4 5

5

1 2 3 6

6 1

7Chevé System, or diatonic cipher notation:

Chinese pentatonic cipher notation:



Figure 11.3  The Chevé System, or diatonic cipher notation used in many ethnomusicological texts. 
Here the sequence 1–2–3–4–5–6–7– represents one “octave” of the standard Western diatonic scale. 
When applied to the original Chinese pentatonic scale in Figure 11.2, the sequence reads 1–2–3–5–6–1, 
which represents the latter scale fairly well.
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 Sléndro consists of a 5-tone or pentatonic scale. An application of the latter sequence of ciphers 
to this scale does not yield favorable results. Regrettably, since most writers do not bother to dis-
cuss these inherent difficulties, the transmission of accurate information suffers. Avoidance of such 
discussions is based on two perplexing facts: (1) No two gamelans have identical tunings, and (2) 
differences in tuning may vary significantly. This lack of consistency is the hallmark of gamelan 
tunings and, when viewed from a musical perspective, is the source of endless artistic inspiration. 
However, given an accurate set of numbers, there is no reason why science should suffer at the 
expense of art. Reliable tuning data reveal tendencies not supported by conventional cipher nota-
tion. For example, Figure 11.4, Row 2, indicates that the sléndro tuning system is traditionally 
notated 1–2–3–5–6–, which immediately suggests the original Chinese pentatonic scale, or a spiral 
of “fifths.” In contrast, Figure 11.4, Row 3, shows recalculated average cent values of 28 Javanese 
sléndro gamelans analyzed by Wasisto Surjodiningrat, et al.3 Note that in the majority of cases, 
traditional pitch 3 tends to sound like a “flat fourth,”4 as in frequency ratio XZ\zn [470.8 ¢], and not 
like a “sharp major third,” ratio <Z\nv [407.8 ¢]. Similarly, traditional pitch 6 tends to sound like a 
“flat minor seventh,”5 as in ratio M\v [968.8 ¢], and not like a “sharp major sixth,” ratio XM|zn [905.9 ¢]. 
Because traditional pitches 3 and 6 are generally tuned a “semitone” higher than enumerated, we 
should write sléndro as 1–2–4–5–7 –, and if not, we should understand it as such.6 Furthermore, 
sléndro and pélog “octaves” are frequently tuned about a syntonic comma, ratio <Z|,/ [21.5 ¢], sharp.7 
This technique gives many gamelans a shimmering musical quality because “sharp octaves” cause 
very noticeable beat rate patterns on powerful percussion instruments made of bronze. So, to ac-
knowledge this unique and vital feature of many Javanese gamelans, it would not be entirely incor-
rect to notate sléndro 1–2–4–5–7 –, as in Figure 11.4, Row 1, to indicate such “sharp octaves.”
 A complete or double gamelan consists of a set of instruments tuned in sléndro, and a set of 
instruments tuned in pélog. Consider now the sléndro scale of a saron demung, a percussion in-
strument with seven bronze bars, which belongs to a famous double gamelan called Kyahi Kan-
jutmesem.8 (Since Surjodiningrat, et al. give all frequencies rounded to zero decimal places, I will 
do the same with respect to the related frequency and cent calculations below. However, wherever 
warranted, I will also continue to give frequency and cent values carried out to one decimal place.) 
This instrument is tuned to the following frequencies: 248 cps, 287 cps, 331 cps, 378 cps, 435 cps, 
500 cps, and 580 cps. Here sléndro begins on the second bar, and the “sharp octave” resides on the 
seventh bar. Since D4 of 12-TET vibrates at 293.7 cps, and since the second bar vibrates at 287 cps, 
or 40.0 ¢ flat of D4, observe that the first note in Figure 11.4 does not reflect this pitch. Instead, the 
cent values in Figure 11.4, Row 4, were calculated relative to the frequency of the second bar, or to 
the first pitch of the sléndro scale. According to Equation 9.21,

10

10

331 cps
Pitch 2 log 3986.314 247 ¢

287 cps

378 cps
Pitch 3 log 3986.314 477 ¢ ...

287 cps

= ´ =

= ´ =

 The tones in Figures 11.4 and 11.5 only give very rough approximations of the cent averages in 
Rows 3. Refer to the 5-limit analysis in Figure 11.4, Row 5, and notice that sléndro in its simplest 
form consists of two ascending C\x’s, or two ascending “fifths”: [Pitch 5 = Z\z ´ C\x = C\x], [Pitch 2 = 
C\x ´ C\x = >\v = >\,], and two descending C\x’s, or two descending “fifths”: [Pitch 3 = Z\z  C\x = X\c =  
V\c], [Pitch 6 = V\c  C\x = <\. = ZN\.]. However, because pitch 6 tends to sound like a “flat minor 
seventh,” note carefully that a typical sléndro scale does not have an interval of a “major third.” 
To help identify extremely sharp or flat sounding pitches, Figures 11.4 and 11.5 show such tones 
with arrows pointing upward or downward, respectively; these arrows indicate tones that sound 
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Part III

INDIAN MUSIC

Ancient Beginnings

     11.20     

One of the oldest and most revered texts on Indian music is a work entitled Natyasastra, written by 
Bharata (early centuries A.D.). Although large portions of Bharata’s treatise recount performance 
practices of the theater and dance, Volume 2, Chapters 28–33, deal exclusively with music. In 
Natyasastra 28.21, Bharata begins his description of the classical 22-sruti scale by giving the names 
of seven svaras, translated below as notes, and also interpreted in this discussion as tones and scale 
degrees.

Nat. 28.21 — The seven notes [svaras] are: Sadja [Sa], Rsabha [Ri], Gan-
dhara [Ga], Madhyama [Ma], Pañcama [Pa], Dhaivata [Dha], and Nisada 
[Ni].1 (Text in brackets mine.)

Bharata then defines the musical qualities of four different kinds of sounds, and specifies the con-
sonant and dissonant intervals contained in two different scales called Sadjagrama (Sa-grama) and 
Madhyamagrama (Ma-grama). 

Nat. 28.22 — [According] as they relate to an interval of [more or less] Sru-
tis, they are of four classes, such as Sonant (vadin), Consonant (samvadin), 
Assonant (anuvadin), and Dissonant (vivadin).

That which is an Amsa [note] anywhere, will in this connection, be called 
there Sonant (vadin). Those two notes which are at an interval of nine or 
thirteen Srutis from each other are mutually Consonant (samvadin), e.g., 
Sadja and Madhyama, Sadja and Pañcama, Rsabha and Dhaivata, Gan-
dhara and Nisada in the Sadja Grama. Such is the case in the Madhyama 
Grama, except that Sadja and Pañcama are not Consonant, while Pañ-
cama and Rsabha are so . . . 

23 — In the Madhyama Grama, Pañcama and Rsabha are Consonant while 
Sadja and Pañcama are so in the Sadja Grama [only].

The notes being at an interval of [two or] twenty Srutis are Dissonant, e.g., 
Rsabha and Gandhara, Dhaivata and Nisada.

. . . As a note [prominently] sounds it is called Sonant; as it sounds in conso-
nance [with another] it is Consonant; as it sounds discordantly [to another] 
it is Dissonant, and as it follows [another note] it is called Assonant. These 
notes become low or high according to the adjustment of the strings . . . 
of the Vina . . .2 (Bold italics mine.)

 With this general background information — which will prove crucial in constructing the scales 
— Bharata then quantifies these seven scale degrees according to how many srutis (from the San-
skrit sru, lit. to hear; sruti in music, an interval) are contained between each degree.

Nat. 28.23 — . . . Now, there are two Gramas: Sadja and Madhyama. Each 
of these two (lit. there) include twenty-two Srutis in the following manner: 
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24 — Srutis in the Sadja Grama are shown as follows: three [in Ri], two 
[in Ga], four [in Ma], four [in Pa], three [in Dha], two [in Ni], and four 
[in Sa].

In the Madhyama Grama, Pañcama should be made deficient in one Sruti. 
The difference which occurs in Pañcama when it is raised or lowered by 
a Sruti and when consequential slackness or tenseness [of strings] occurs, 
will indicate a typical (pramana) Sruti.3 (Bold italics and text in brackets 
mine.)

 Next, Bharata describes a demonstration on two vinas, each equipped with seven strings, and 
tuned exactly alike to the Sa-grama. The tuning of one vina remains unchanged. Bharata gives 
directions for changing the tuning of the other vina in four separate steps. Each step requires the 
lowering of all seven degrees by increments of one sruti. Consequently, after the first step, or after 
lowering all the strings by 1 sruti, no two degrees of the two vinas match because the smallest in-
terval of the Sa-grama consists of 2 srutis. After the second step, or after lowering Ga by 2 srutis, 
it will sound the same tone as Ri of the unchanged vina; and after lowering Ni by 2 srutis, it will 
sound the same tone as Dha of the unchanged vina. Similarly, after the third step, or after lowering 
Ri by 3 srutis, it will sound the same tone as Sa of the unchanged vina; and after lowering Dha by 
3 srutis, it will sound the same tone as Pa of the unchanged vina. Finally, after the fourth step, or 
after lowering Ma by 4 srutis, it will sound the same tone as Ga of the unchanged vina; after low-
ering Pa by 4 srutis, it will sound the same tone as Ma of the unchanged vina; and after lowering 
Sa by 4 srutis, it will sound the same tone as Ni of the unchanged vina. In a passage translated by 
N.A. Jairazbhoy,4 Bharata states, “. . . lower again, in exactly this manner . . .” (punarapi tad-
vadevapakarsat),5 which means that this experiment was intended to prove that all sruti intervals 
are exactly equal in size. Bharata implies that only controlled decreases by identical srutis will 
produce the scale degrees on the changed vina that exactly match the degrees of the unchanged 
vina. In this context, the unchanged vina represents a scientific control, or an aural reminder of the 
changed vina before it was lowered.
 Bharata then summarizes

Nat. 28.25–26 — In the Sadja Grama, Sadja includes four Srutis, Rsabha 
three, Gandhara two, Madhyama four, Pañcama four, Dhaivata three, and 
Nisada two.

27–28 — [In the Madhyama Grama] Madhyama consists of four Srutis, 
Pañcama three, Dhaivata four, Nisada two, Sadja four, Rsabha three, and 
Gandhara two Srutis. [Thus] the system of [mutual] intervals (antara) has 
been explained.6

In the absence of clearly defined length ratios and interval ratios,7 this mixture of numerical and 
verbal terms seems completely open to interpretation. However, a historically accurate analysis 
reveals that the musical possibilities contained in this text are extremely limited and point toward 
only one plausible explanation. Before we examine this interpretation of Bharata’s text, let us first 
eliminate two possibilities.
 In Natyasastra 28.24, Bharata distinguishes between the Sa-grama and the Ma-grama by stat-
ing that in the former scale, Pa contains 4 srutis, and in the latter scale, Pa contains only 3 srutis. 
He defines this difference based on a typical sruti, or a pramana sruti. Bharata goes on to describe 
his experiment with two vinas, which only works if the pramana sruti is a standard interval, or an 
interval of a constant size. All these formulations lead to one possibility, namely, that Bharata was 
contemplating geometric division of the “octave” into 22 equal parts. To achieve such a “division” 
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Part IV

ARABIAN, PERSIAN, AND TURKISH MUSIC

     11.45     

North American musicians who do not read Arabic, French, or German have very limited oppor-
tunities to study ancient Arabian music and tuning theory from original sources. Of the treatises 
on music written by Al-Frb (d. c. 950), Ibn Sn (980–1037), a Al-Dn (d. 1294), Al-Jurjn  
(d. 1413), Al-Ldhiq (d. 1494), and Al-Shirwn (d. 1626), not a single work has ever been trans-
lated into English. Furthermore, due to intractable religious, linguistic, and intellectual prejudices 
against Islam, Christian-dominated institutions throughout Europe — such as Catholic and Prot-
estant churches, schools and universities, and the craft guilds — managed by 1600 to completely 
eradicate the Arabian influence from the written history of European music. For example, the 
works of Michael Praetorius (1571–1621) and Marin Mersenne (1588–1648) offer no information on 
the origins of one of the most important instruments of their time: the lute. First in Arabian his-
tory (from approximately 700) and later in European history (to approximately 1700), the fretted 
lute served for a thousand years as an instrument of scientific exploration and musical expression. 
Henry George Farmer (1882–1965), an eminent historian of Arabian music, gives this etymology of 
lute (from the Arabic al-ud, the lute; lit. flexible stick or branch):

Western Europe owes both the instrument and its name to the Arabic 
al-ud, as we see in the Portuguese alaud, the Spanish laud, the German 
Laute, the Dutch Luit, the Danish Lut, the Italian liuto, the English lute, 
and the French luth.1

Are we to naïvely accept the highly improbable possibility that while Europeans inherited the lute 
from the Arabs, European musicians learned absolutely nothing about tuning from Arabian musi-
cians? Consider the following fact: by the end of the 13th century, Arabian literature included not 
only a voluminous and highly sophisticated collection of works on the art and science of music, but 
on the precise mathematics of lute tunings as well.
 Between approximately A.D. 750 and 1250, many nations in the West experienced the religious, 
scientific, and artistic influences of what I call the Arabian Renaissance. After the life and death 
of the prophet Mohammed (c. 570 – d. 632), a stunning series of military campaigns brought 
Spain, Sicily, North Africa, Egypt, Syria, al-raq, Persia (modern Iran), Farghnah (Central Asia), 
ukhristn (modern Afghanistan), and Western India (modern Pakistan) under Moslem control. 
Coincidentally, most of these territories were conquered by Alexander the Great (356–323 B.C.) a 
thousand years earlier. To administer their newly conquered empire, Moslem rulers created two 
great cultural centers. In 762 Baghdd became the capital of the empire in the east, and subsequent 
to the invasion of 711 into Spain, in 756 Cordova became the capital of the empire in the west. The 
former was destroyed by Mongols in 1258, and the latter, reconquered by Christians in 1236. The 
Reconquista (Reconquest) of Spain continued until the final defeat of the Moslems at Granada in 
1492.2

 Reminiscent of the building of Alexandria by Alexander the Great, Baghdd and Cordova 
boasted running water, paved and lighted streets, world-renowned architectural monuments, inter-
national markets, universities, hospitals, and above all, libraries that contained hundreds of thou-
sands of volumes. If it were not for these libraries, and the care Arabian translators and scholars 
bestowed on ancient texts, the works of Homer, Hippocrates, Plato, Aristotle, Euclid, Archimedes, 
Nicomachus, and Ptolemy, to name only a few, would probably not have survived. The task of 
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translating these volumes began in Baghdd in approximately 750, and later became centralized 
at the famous Bayt al-ikmah (House of Wisdom) in 830. By the end of the 10th century, most 
of the translations were completed. This phenomenal achievement raises the inevitable question, 
“Is the Italian Renaissance indebted to the Arabian Renaissance?” To contemplate the profound 
interdependence of these two civilizations, consider this biographical account from Philip K. Hitti’s 
exhaustive work entitled History of the Arabs:

Al-Kindi . . . flourished in Baghdd. His pure Arabian descent earned him 
the title “the philosopher of the Arabs,” and indeed he was the first and 
last example of an Aristotelian student in the Eastern caliphate who sprang 
from Arabian stock. Eclectic in his system, Al-Kindi endeavored in Neo-
Platonic fashion to combine the views of Plato and Aristotle and regarded 
the Neo-Pythagorean mathematics as the basis of all science. Al-Kindi 
was more than a philosopher. He was astrologer, alchemist, optician and 
music theorist. No less than two hundred and sixty-five works are ascribed 
to him, but most of them unhappily have been lost. His principal work 
on geometrical and physiological optics, based on the Optics of Euclid in 
Theon’s recension, was widely used in both East and West until superseded 
by the greater work of ibn-al-Haytham [d. c. 1039]. In its Latin translation, 
De aspectibus, it influenced Roger Bacon [c. 1214 – d. 1292]. Al-Kindi’s 
three or four treatises on the theory of music are the earliest extant works 
in Arabic showing the influence of Greek writers on that subject. In one 
of these treatises Al-Kindi describes rhythm (iq1  ) as a constituent part of 
Arabic music. Measured song, or mensural music, must therefore have been 
known to the Moslems centuries before it was introduced into Christian 
Europe. Of Al-Kindi’s writings more have survived in Latin translations, 
including those of Gerard of Cremona [d. 1187], than in the Arabic origi-
nal.3 (Dates in brackets mine.)

     11.46     

The oldest extant source on Arabian music is a work entitled Risala  hubr t2lif al-alhan (On the 
composition of melodies), by Isq Al-Kind (d. c. 874). Because this text only survived as a frag-
mented 17th-century transcription of a 13th-century copy, many pages are missing; this explains 
why the text begins in mid-sentence. Fortunately, the fragments provide enough information to 
impart Al-Kind’s ud tuning, which bestows the following six incipient contributions on the history 
of music:
 (1) Outside China, this is the first mathematical description of a 12-tone chromatic scale. Al-
though Al-Kind’s scale also consists of a spiral of “fifths,” it differs from the Chinese model in that 
the tonic, ratio Z\z, simultaneously functions as the origin of two different spirals: one ascends four 
“fifths,” or four C\x’s, and the other descends seven “fifths,” or seven C\x’s. (See Section 11.47, Table 
11.22.)
 (2) Al-Kind’s 12-tone scale is the first tuning that uses identical note names to identify the 
tones of the lower and upper “octave.” In his text, Al-Kind specifically states that the musical 
qualities of tones separated by an “octave” are identical.
 (3) This is the first mathematically verifiable scale that accounts for the comma of Pythagoras. 
In his ud tuning, Al-Kind distinguishes between the apotome [C], ratio XZ<M|x/v,, and the limma 
[D], ratio XBN|xvc.
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12 / ORIGINAL INSTRUMENTS

Acoustic music is the most difficult music. Building musical instruments from the ground up is an 
expression of freedom and, therefore, an expression of imagination. Nothing about this art is hewn 
in stone. The creative builder examines all aspects of musical instrument construction, and on a 
case-by-case basis decides which traditions to keep, and which to throw out.
 I build because the tunings and timbres I want to hear do not exist on store shelves. Robinson 
Crusoe built because he had no choice. And yet, his creations also had no critics, and so his imagi-
nation became his life. Often when I hike through forests or climb mountains, I am reminded that 
only man knows what time it is. When I enter Crusoe’s world, or when in building an instrument 
time ceases to exist, I live with the knowledge that success is only a function of thought, work, and 
patience.
 The desire for perfection is the juggernaut of creativity. All my instruments are flawed. A bar 
may not ring as long as another bar; a canon bridge may be too high or too low; or a tone hole may 
be too wide or too narrow. I know where all the flaws are, and could find many more. But what is 
the point? The only thing that matters is to build and to make a music that is sustainable in time. 
I was born a musician, and have built musical instruments since 1975. In the words of Walt Whit-
man (1819–1892), “I . . . begin, hoping to cease not till death.”
 I also hope that this book and Chapters 12–13 will inspire others to think critically about 
acoustic music, and perhaps to build an original instrument or two. One of the happiest moments 
of my life is to finish a project, step back, and declare in a state of complete surprise, “I’d like to 
meet the person who built this instrument.”

Stringed Instruments

CHRYSALIS

     12.1     

The Chrysalis in Plate 1, my first concert-size instrument, was inspired by a large, round, stone-
hewn Aztec calendar. I asked myself, “What if there was a musical instrument in the shape of a 
wheel? And what if this wheel had strings for spokes, could spin, and when played, would sound 
like the wind?” As described below, the Chrysalis wheel has two sides, or two circular soundboards, 
covered by eighty-two strings on each side.
 Figure 12.1(A) shows that a steel axle (a) passes through the center of an octagonal oak hub 
(b). This hub acts as the central structural component of the wheel. Eight birch spokes (c) radiate 
from the hub to the centers of eight maple dowel spacers (d), which in turn hold two birch plywood 
rings (e). Figure 12.1(B) illustrates two Sitka spruce soundboards (f) glued to the rings. The rings  
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reinforce the edges of the soundboards while leaving the inner soundboard surface areas unobstruct-
ed for maximum resonance. The soundboards consist of several jointed strips of spruce 6.0 in. wide 
by Z\v in. thick. On the back sides, spruce ribs glued against the grain give the soundboards struc-
tural support. Furthermore, two bridges (g) fastened at off-center locations on the soundboards 
provide the instrument with varying string lengths. The original rosewood bridges exploded from 
the force of the strings; so, I replaced them with aluminum bridges. I located the bridges directly 
opposite each other, which enables the performer to reach both long and short strings from the 
playing position to the left of the wheel; this configuration of the bridges also balances the motion 
of the wheel. Eighty-two tuning gears (h) encircle each soundboard. From here, steel strings (i) 
pass to the bridges. Note that the two longest strings go through holes in the axle. Two sealed ball 
bearings (j) support the wheel at the ends of the axle. These bearings enable the performer to turn 
the wheel in either direction. Finally, the wave-like stand — inspired by my love of the ocean and 
many years of surfing along the coasts of California and Mexico — affords maximum access to the 
strings; at any given position of the wheel, all but a few strings are within reach of the performer.
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Section 12.1

Figure 12.1  Parts and construction of the Chrysalis wheel. (A) This longitudinal cross-section 
shows a steel axle (a) that passes through the center of an octagonal hub (b). This hub acts as the 
central structural component of the wheel. Eight spokes (c) radiate from the hub to the centers of 
eight dowel spacers (d), which in turn hold two plywood rings (e). (B) This transverse cross-section 
illustrates two soundboards (f) glued to the rings, and two aluminum bridges (g) fastened to the 
soundboards. Tuning gears (h) encircle both soundboards. From here, long and short steel strings (i) 
pass to the bridges. Two sealed ball bearings (j) support the wheel at the ends of the steel axle. These 
bearings enable the performer to turn the wheel in either direction. (Not to scale.)



13 / BUILDING A LITTLE CANON

Parts, Materials, Labor, and Detailed Dimensions

The Little Canon in Plate 12 is the first musical instrument I built. Since a small canon is not too 
difficult to make, the following description may inspire some readers to build such an instrument, 
and to verify for themselves which intervals and scales sound consonant, and which sound disso-
nant.
 The Little Canon consists of a long rectangular sound box equipped with six strings. Figure 
13.1 shows a transverse cross-section of the sound box. The top or soundboard (a) and two sides 
(b) are redwood. Clear kiln-dried redwood is fairly resonant and, in Northern California, is easily 
obtained in many different dimensions. However, Sitka spruce works just as well, and produces a 
better tone. The base (c) is birch plywood. Plate 12 does not reveal the layers of the plywood base 
because I veneered the exterior edge with birch veneer. A rigid base is very important because it 
prevents the instrument from bending and twisting out of shape after the strings are tensioned. 
Also in Figure 13.1, note that the top and base overlap the side pieces. This design ensures that the 
top and base provide flat gluing surfaces. Now, in the corners along the entire lengths of the top 
and side pieces, and along the entire lengths of the base and side pieces, redwood liners (d) reinforce 
the sound box joints and strengthen the instrument as a whole. First, I glued the upper and lower 
liners to the sides. Next, I used flat head wood screws (e) and glue to secure the base to the sides. 
Finally, I fastened the top to the sides. 
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Figure 13.1  Parts and construction of the sound box of the Little Canon. This transverse cross-
section shows that redwood top (a) and birch plywood base (c) overlap the redwood sides (b). Red-
wood liners (d), glued into the corners along the lengths of the top and side pieces, and along the 
lengths of the base and side pieces, reinforce the sound box joints. Flat head wood screws (e) secure 
the base to the sides. 
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835Building a Little Canon

 Turn to Figure 13.2, which shows a longitudinal cross-section of the Little Canon. To close the 
structure, notice that I glued redwood end pieces (a) to the top and sides at the ends of the sound 
box. However, observe carefully that the plywood base (b) extends beyond the two end pieces. Flat 
head wood screws secure a rounded beech hitch block (c) to the base at the right end, and a short 
angled birch block (d) to the base at the left end of the instrument. I also glued these two blocks 
to the end pieces. Plate 12 shows that the hitch block on the right has six holes for threading and 
fastening the ends of the strings. The angled block on the left supports a birch tuning gear bracket 
(e). Four oval head wood screws secure the tuning gear bracket to the angled block. Also, note that 
I cut two long slots into the bracket. I then drilled three holes that pass through the front edge, 
the front slot, and into the body of the bracket; similarly, three holes pass through the back edge, 
the back slot, and into the body of the bracket. Next, I inserted three nylon posts of a tuning gear 
assembly (f) through the front holes, and three nylon posts of a tuning gear assembly through the 
back holes. Four screws hold each assembly in place. Three strings enter each slot and wind around 
the nylon posts to tension the strings.
 Plate 12 and Figure 13.2 show that a birch nut (g) and a stationary maple bridge (h) support 
six strings (i). The nut and bridge have hard rosewood caps to prevent the strings from cutting 
into these parts. I glued the nut into an angled slot in the tuning gear bracket and against the 
left end piece; and I epoxied the bridge on the top near the hitch block. Both components have a 
height of M\, in. above the redwood top or soundboard so that the strings run parallel to the surface 
of the soundboard. Finally, six moveable oak bridges (j) divide the strings into different vibrating 
lengths.
 With respect to materials, there are two basic kinds of wood: softwoods and hardwoods. Spruce 
and redwood are domestic softwoods; birch, beech, maple, and oak are domestic hardwoods. Rose-
wood is a tropical hardwood with a weight density greater than water, which means it does not 
float. (See Appendices E and G.) For the sound box and liners, it is important to use clear kiln-
dried redwood or spruce. However, for the rest of the instrument, all domestic hardwoods work 
equally well. I used five different hardwoods simply because they were available to me. 
 I strongly recommend yellow woodworking glue called aliphatic resin glue, and two-part clear 
epoxy. Do not use white glue or hide glue. Also, I no longer use wood screws. The tapered shanks 
and shallow threads of these screws do not cut into the fibers of the wood very well. Instead, I use 
sheet metal screws (also called tapping screws) in wood. These screws have cylindrical shanks and 
extremely sharp and deep threads. 
 The lengths of commercial acoustic guitar strings determine the distance of the Little Canon 
from the farthest tuning gear posts to the hitch block. Since this instrument requires six identical 
strings, one must buy six identical sets of guitar strings because all the strings in a single set have 
different diameters. Readers interested in building large canons with long strings must make their 
own strings. Piano supply houses and some local piano technicians sell high-carbon spring steel 
music wire in 1 lb. rolls. However, piano wires do not work for making canon strings because the 
diameters are too thick and, therefore, require too much tension to produce a good tone. See Ap-
pendix D for ordering thin steel music wire sizes with diameters in the 0.016–0.024 in. range. Also, 
tuning gears equipped with long nylon posts are available from local guitar shops. 
 Readers who would like to own a small canon but are not inclined to build one must hire a 
woodworker. A professional should require approximately 10 hours to build such an instrument. 
The sound box is the most time-consuming task. First, thick boards must be either resawn or sur-
face planed to make the thin top, side, and end pieces. Then the liners must be glued to the inside 
surfaces of the sides before the sound box can be assembled. While the glue is drying, all the other 
parts can be made. To minimize labor charges, the reader should have the tuning gears and strings 
available for measuring before the building begins.



We hope you have enjoyed this preview.

Buy Now
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