Musical Mathematics

ON THE ART AND SCIENCE OF ACOUSTIC INSTRUMENTS

Cris Forster

MUSICAL MATHEMATICS

ON THE ART AND SCIENCE OF ACOUSTIC INSTRUMENTS

MUSICAL MATHEMATICS

ON THE ART AND SCIENCE OF ACOUSTIC INSTRUMENTS

Text and Illustrations
by Cris Forster

Copyright © 2010 by Cristiano M.L. Forster
All Rights Reserved. No part of this book may be reproduced in any form without written permission from the publisher.

Library of Congress Cataloging-in-Publication Data available.
ISBN: 978-0-8118-7407-6
Manufactured in the United States.

All royalties from the sale of this book go directly to the Chrysalis Foundation, a public 501(c)3 nonprofit arts and education foundation.
https://chrysalis-foundation.org

Photo Credits:
Will Gullette, Plates 1-12, 14-16.
Norman Seeff, Plate 13.

10987654321

Chronicle Books LLC
680 Second Street
San Francisco, California 94107
www.chroniclebooks.com

In Memory of Page Smith my enduring teacher

And to Douglas Monsour our constant friend

I would like to thank the following individuals and foundations for their generous contributions in support of the writing, designing, and typesetting of this work:

Peter Boyer and Terry Gamble-Boyer
The family of Jackson Vanfleet Brown
Thomas Driscoll and Nancy Quinn
Marie-Louise Forster
David Holloway
Jack Jensen and Cathleen O'Brien
James and Deborah Knapp
Ariano Lembi, Aidan and Yuko Fruth-Lembi
Douglas and Jeanne Monsour
Tim O'Shea and Peggy Arent
Fay and Edith Strange
Charles and Helene Wright

Ayrshire Foundation
Chrysalis Foundation

The jewel that we find, we stoop and take't, Because we see it; but what we do not see We tread upon, and never think of it.

W. Shakespeare

For more information about
Musical Mathematics: On the Art and Science of Acoustic Instruments please visit:
https://chrysalis-foundation.org
https://www.amazon.com

CONTENTS

Foreword by David R. Canright v
Introduction and Acknowledgments vii
Tone Notation ix
List of Symbols xi
CHAPTER 1 MICA MASS 1
Part I Principles of force, mass, and acceleration 1
Part II Mica mass definitions, mica unit derivations, and sample calculations 14
Notes 24
CHAPTER 2 PLAIN STRING AND WOUND STRING CALCULATIONS 27
Part I Plain strings 27
Part II Wound strings 36
Notes 41
CHAPTER 3 FLEXIBLE STRINGS 44
Part I Transverse traveling and standing waves, and simple harmonic motion in strings 44
Part II Period and frequency equations of waves in strings 54
Part III Length, frequency, and interval ratios of the harmonic series on canon strings 59
Part IV Length, frequency, and interval ratios of non-harmonic tones on canon strings 69
Part V Musical, mathematical, and linguistic origins of length ratios 79
Notes 94
CHAPTER 4 INHARMONIC STRINGS 98
Part I Detailed equations for stiffness in plain strings 98
Part II Equations for coefficients of inharmonicity in cents 108
Part III General equations for stiffness in wound strings 113
Notes 115
CHAPTER 5 PIANO STRINGS VS. CANON STRINGS 118
Part I Transmission and reflection of mechanical and acoustic energy 118
Part II Mechanical impedance and soundboard-to-string impedance ratios 120
Part III Radiation impedance and air-to-soundboard impedance ratios 126
Part IV Dispersion, the speed of bending waves, and critical frequencies in soundboards 130
Part V Methods for tuning piano intervals to beat rates of coincident string harmonics 135
Part VI Musical advantages of thin strings and thin soundboards 141
Notes 143
CHAPTER 6 BARS, RODS, AND TUBES 147
Part I Frequency equations, mode shapes, and restoring forces of free-free bars 147
Part II Free-free bar tuning techniques 160
Part III Frequency equations, mode shapes, and restoring forces of clamped-free bars 174
Part IV Clamped-free bar tuning techniques 176
Notes 178
CHAPTER 7 ACOUSTIC RESONATORS 182
Part I Simple harmonic motion of longitudinal traveling waves in air 182
Part II Equations for the speed of longitudinal waves in solids, liquids, and gases 186
Part III Reflections of longitudinal traveling waves at the closed and open ends of tubes 189
Part IV Acoustic impedance and tube-to-room impedance ratio 196
Part V Longitudinal pressure and displacement standing waves in tubes 200
Part VI Length and frequency equations of tube resonators 203
Part VII Theory of cavity resonators 212
Part VIII Cavity resonator tuning techniques 219
Notes 223
CHAPTER 8 SIMPLE FLUTES 227
Part I Equations for the placement of tone holes on concert flutes and simple flutes 227
Part II Equations for analyzing the tunings of existing flutes 242
Part III Suggestions for making inexpensive yet highly accurate simple flutes 246
Notes 248
CHAPTER 9 THE GEOMETRIC PROGRESSION, LOGARITHMS, AND CENTS 253
Part I Human perception of the harmonic series as a geometric progression 253
Part II Logarithmic processes in mathematics and human hearing 257
Part III Derivations and applications of cent calculations 265
Part IV Logarithmic equations for guitar frets and musical slide rules 271
Notes 276
CHAPTER 10 WESTERN TUNING THEORY AND PRACTICE 280
Part I Definitions of prime, composite, rational, and irrational numbers 281
Part II Greek classifications of ratios, tetrachords, scales, and modes 284
Part III Arithmetic and geometric divisions on canon strings 291
Part IV Philolaus, Euclid, Aristoxenus, and Ptolemy 299
Part V Meantone temperaments, well-temperaments, and equal temperaments 334
Part VI Just intonation 365
Notes 460
CHAPTER 11 WORLD TUNINGS 485
Part I Chinese Music 485
Notes 504
Part II Indonesian Music: Java 508
Bali 522
Notes 535
Part III Indian Music: Ancient Beginnings 540
South India 564
North India 587
Notes 600
Part IV Arabian, Persian, and Turkish Music 610
Notes 774
CHAPTER 12 ORIGINAL INSTRUMENTS 788
Stringed Instruments:
Chrysalis 788
Harmonic/Melodic Canon 790
Bass Canon 800
Just Keys 808
Percussion Instruments:
Diamond Marimba 824
Bass Marimba 826
Friction Instrument:
Glassdance 828
Wind Instruments:
Simple Flutes 833
CHAPTER 13 BUILDING A LITTLE CANON 834
Parts, materials, labor, and detailed dimensions 834
Epilog by Heidi Forster 839
Plate 1: Chrysalis 845
Plate 2: Harmonic/Melodic Canon 846
Plate 3: Bass Canon 847
Plate 4: String Winder (machine) 848
Plate 5: String Winder (detail) 849
Plate 6: Just Keys 850
Plate 7: Diamond Marimba 851
Plate 8: Bass Marimba 852
Plate 9: Glassdance 853
Plate 10: Glassdance (back) 854
Plate 11: Simple Flutes 855
Plate 12: Little Canon 856
Plate 13: Cris Forster with Chrysalis 857
Plate 14: Heidi Forster playing Glassdance 858
Plate 15: David Canright, Heidi Forster, and Cris Forster 859
Plate 16: Chrysalis Foundation Workshop 860
Bibliography for Chapters 1-9 861
Bibliography for Chapter 10 866
Bibliography for Chapter 11 871
Bibliography for Chapter 12 877
Appendix A: Frequencies of Eight Octaves of 12-Tone Equal Temperament 879
Appendix B: Conversion Factors 880
Appendix C: Properties of String Making Materials 882
Appendix D: Spring Steel Music Wire Tensile Strength and Break Strength Values 884
Appendix E: Properties of Bar Making Materials 885
Appendix F: Properties of Solids 888
Appendix G: Properties of Liquids 890
Appendix H: Properties of Gases 892
Index 895

Foreword

I met Cris Forster more than thirty years ago. Shortly thereafter, I saw him perform Song of Myself, his setting of Walt Whitman poems from Leaves of Grass. His delivery was moving and effective. Several of the poems were accompanied by his playing on unique instruments - one an elegant box with many steel strings and moveable bridges, a bit like a koto in concept; the other had a big wheel with strings like spokes from offset hubs, and he rotated the wheel as he played and intoned the poetry. I was fascinated.

Since that time, Cris has built several more instruments of his own design. Each shows exquisite care in conception and impeccable craftsmanship in execution. And of course, they are a delight to hear. Part of what makes them sound so good is his deep understanding of how acoustic musical instruments work, and part is due to his skill in working the materials to his exacting standards.

But another important aspect of their sound, and indeed one of the main reasons Cris could not settle for standard instruments, is that his music uses scales and harmonies that are not found in the standard Western system of intonation (with each octave divided into twelve equal semitones, called equal temperament). Rather, his music employs older notions of consonance, which reach back as far as ancient Greek music and to other cultures across the globe, based on what is called just intonation. Here, the musical intervals that make up the scales and chords are those that occur naturally in the harmonic series of overtones, in stretched flexible strings, and in organ pipes, for example.

In just intonation, the octave is necessarily divided into unequal parts. In comparison to equal temperament, the harmonies of just intonation have been described as smoother, sweeter, and/or more powerful. Many theorists consider just intonation to be the standard of comparison for consonant intervals. There has been a resurgence of interest in just intonation since the latter part of the twentieth century, spurred by such pioneers as Harry Partch and Lou Harrison. Even so, the community of just intonation composers remains comparatively quite small, and the subset of those who employ only acoustic instruments is much smaller still. I know of no other living composer who has created such a large and varied ensemble of high-quality just intoned acoustical instruments, and a body of music for them, as Cris Forster.

Doing what he has done is not easy, far from it. The long process of developing his instruments has required endless experimentation and careful measurement, as well as intense study of the literature on acoustics of musical instruments. In this way Cris has developed deep and rich knowledge of how to design and build instruments that really work. Also, in the service of his composing, Cris has studied the history of intonation practices, not only in the Western tradition, but around the world.

This book is his generous offering of all that hard-earned knowledge, presented as clearly as he can make it, for all of you who have an interest in acoustic musical instrument design and/or musical scales over time and space. The unifying theme is how mathematics applies to music, in both the acoustics of resonant instruments and the analysis of musical scales. The emphasis throughout is to show how to use these mathematical tools, without requiring any background in higher mathematics; all that is required is the ability to do arithmetic on a pocket calculator, and to follow Cris' clear step-by-step instructions and examples. Any more advanced mathematical tools required, such as logarithms, are carefully explained with many illustrative examples.

The first part of the book contains practical information on how to design and build musical instruments, starting from first principles of vibrating sound sources of various kinds. The ideas are explained clearly and thoroughly. Many beautiful figures have been carefully conceived to illuminate the concepts. And when Cris gives, say, formulas for designing flutes, it's not just something he read in a book somewhere (though he has carefully studied many books); rather, you can be
sure it is something he has tried out: he knows it works from direct experience. While some of this information can be found (albeit in a less accessible form) in other books on musical acoustics, other information appears nowhere else. For example, Cris developed a method for tuning the overtones of marimba bars that results in a powerful, unique tone not found in commercial instruments. Step-by-step instructions are given for applying this technique (see Chapter 6). Another innovation is Cris' introduction of a new unit of mass, the "mica," that greatly simplifies calculations using lengths measured in inches. And throughout Cris gives careful explanations, in terms of physical principles, that make sense based on one's physical intuition and experience.

The latter part of the book surveys the development of musical notions of consonance and scale construction. Chapter 10 traces Western ideas about intonation, from Pythagoras finding number in harmony, through "meantone" and then "well-temperament" in the time of J.S. Bach, up to modern equal temperament. The changing notions of which intervals were considered consonant when, and by whom, make a fascinating story. Chapter 11 looks at the largely independent (though sometimes parallel) development of musical scales and tunings in various Eastern cultures, including China, India, and Indonesia, as well as Persian, Arabian, and Turkish musical traditions. As far as possible, Cris relies on original sources, to which he brings his own analysis and explication. To find all of these varied scales compared and contrasted in a single work is unique in my experience.

The book concludes with two short chapters on specific original instruments. One introduces the innovative instruments Cris has designed and built for his music. Included are many details of construction and materials, and also scores of his work that demonstrate his notation for the instruments. The last chapter encourages the reader (with explicit plans) to build a simple stringed instrument (a "canon") with completely adjustable tuning, to directly explore the tunings discussed in the book. In this way, the reader can follow in the tradition of Ptolemy, of learning about music through direct experimentation, as has Cris Forster.

David R. Canright, Ph.D.
Del Rey Oaks, California
January 2010

Introduction and Acknowledgments

In simplest terms, human beings identify musical instruments by two aural characteristics: a particular kind of sound or timbre, and a particular kind of scale or tuning. To most listeners, these two aspects of musical sound do not vary. However, unlike the constants of nature - such as gravitational acceleration on earth, or the speed of sound in air - which we cannot change, the constants of music - such as string, percussion, and wind instruments - are subject to change. A creative investigation into musical sound inevitably leads to the subject of musical mathematics, and to a reexamination of the meaning of variables.

The first chapter entitled "Mica Mass" addresses an exceptionally thorny subject: the derivation of a unit of mass based on an inch constant for acceleration. This unit is intended for builders who measure wood, metal, and synthetic materials in inches. For example, with the mica unit, builders of string instruments can calculate tension in pounds-force, or lbf, without first converting the diameter of a string from inches to feet. Similarly, builders of tuned bar percussion instruments who know the modulus of elasticity of a given material in pounds-force per square inch, or $\mathrm{lbf} / \mathrm{in}^{2}$, need only the mass density in mica/in ${ }^{3}$ to calculate the speed of sound in the material in inches per second; a simple substitution of this value into another equation gives the mode frequencies of uncut bars.

Chapters 2-4 explore many physical, mathematical, and musical aspects of strings. In Chapter 3 , I distinguish between four different types of ratios: ancient length ratios, modern length ratios, frequency ratios, and interval ratios. Knowledge of these ratios is essential to Chapters 10 and 11. Many writers are unaware of the crucial distinction between ancient length ratios and frequency ratios. Consequently, when they attempt to define arithmetic and harmonic divisions of musical intervals based on frequency ratios, the results are diametrically opposed to those based on ancient length ratios. Such confusion leads to anachronisms, and renders the works of theorists like Ptolemy, Al-Fārābī, Ibn Sīnā, and Zarlino incomprehensible.

Chapter 5 investigates the mechanical interactions between piano strings and soundboards, and explains why the large physical dimensions of modern pianos are not conducive to explorations of alternate tuning systems.

Chapters 6 and 7 discuss the theory and practice of tuning marimba bars and resonators. The latter chapter is essential to Chapter 8 , which examines a sequence of equations for the placement of tone holes on concert flutes and simple flutes.

Chapter 9 covers logarithms, and the modern cent unit. This chapter serves as an introduction to calculating scales and tunings discussed in Chapters 10 and 11.

In summary, this book is divided into three parts. (1) In Chapters $1-9$, I primarily examine various vibrating systems found in musical instruments; I also focus on how builders can customize their work by understanding the functions of variables in mathematical equations. (2) In Chapter 10 , I discuss scale theories and tuning practices in ancient Greece, and during the Renaissance and Enlightenment in Europe. Some modern interpretations of these theories are explained as well. In Chapter 11, I describe scale theories and tuning practices in Chinese, Indonesian, and Indian music, and in Arabian, Persian, and Turkish music. For Chapters 10 and 11, I consistently studied original texts in modern translations. I also translated passages in treatises by Ptolemy, Al-Kindī, the Ikhwān al-Ṣafā, Ibn Sīnā, Stifel, and Zarlino from German into English; and in collaboration with two contributors, I participated in translating portions of works by Al-Fārābī, Ibn Sīnā, Ṣafī Al-Dīn, and Al-Jurjānī from French into English. These translations reveal that all the abovementioned theorists employ the language of ancient length ratios. (3) Finally, Chapters 12 and 13 recount musical instruments I have built and rebuilt since 1975.

I would like to acknowledge the assistance and encouragement I received from Dr. David R. Canright, associate professor of mathematics at the Naval Postgraduate School in Monterey,

California. David's unique understanding of mathematics, physics, and music provided the foundation for many conversations throughout the ten years I spent writing this book. His mastery of differential equations enabled me to better understand dispersion in strings, and simple harmonic motion of air particles in resonators. In Section 4.5, David's equation for the effective length of stiff strings is central to the study of inharmonicity; and in Section 6.6, David's figure, which shows the effects of two restoring forces on the geometry of bar elements, sheds new light on the physics of vibrating bars. Furthermore, David's plots of compression and rarefaction pulses inspired numerous figures in Chapter 7. Finally, we also had extensive discussions on Newton's laws. I am very grateful to David for his patience and contributions.

Heartfelt thanks go to my wife, Heidi Forster. Heidi studied, corrected, and edited myriad versions of the manuscript. Also, in partnership with the highly competent assistance of professional translator Cheryl M. Buskirk, Heidi did most of the work translating extensive passages from $L a$ Musique Arabe into English. To achieve this accomplishment, she mastered the often intricate verbal language of ratios. Heidi also assisted me in transcribing the Indonesian and Persian musical scores in Chapter 11, and transposed the traditional piano score of "The Letter" in Chapter 12. Furthermore, she rendered invaluable services during all phases of book production by acting as my liaison with the editorial staff at Chronicle Books. Finally, when the writing became formidable, she became my sparring partner and helped me through the difficult process of restoring my focus. I am very thankful to Heidi for all her love, friendship, and support.

I would also like to express my appreciation to Dr. John H. Chalmers. Since 1976, John has generously shared his vast knowledge of scale theory with me. His mathematical methods and techniques have enabled me to better understand many historical texts, especially those of the ancient Greeks. And John's scholarly book Divisions of the Tetrachord has furthered my appreciation for world tunings.

I am very grateful to Lawrence Saunders, M.A. in ethnomusicology, for reading Chapters 3, 9, 10 , and 11 , and for suggesting several technical improvements.

Finally, I would like to thank Will Gullette for his twelve masterful color plates of the Original Instruments and String Winder, plus three additional plates. Will's skill and tenacity have illuminated this book in ways that words cannot convey.

Cris Forster
San Francisco, California
January 2010

TONE NOTATION

1. American System, used throughout this text.
2. Helmholtz System.
3. German System.

LIST OF SYMBOLS

Latin

12-TET 12-tone equal temperament
$a \quad$ Acceleration; in $/ \mathrm{s}^{2}$
a.l.r. Ancient length ratio; dimensionless
$B \quad$ Bending stiffness of bar; lbf•in ${ }^{2}$, or mica $\cdot \mathrm{in}^{3} / \mathrm{s}^{2}$
$B^{\prime} \quad$ Bending stiffness of plate; lbf.in, or mica $\cdot \mathrm{in}^{2} / \mathrm{s}^{2}$
$B_{\mathrm{A}} \quad$ Adiabatic bulk modulus; psi, lbf/in ${ }^{2}$, or mica/(in $\cdot \mathrm{s}^{2}$)
$B_{\mathrm{I}} \quad$ Isothermal bulk modulus; psi, lbf/in ${ }^{2}$, or mica/(in $\cdot \mathrm{s}^{2}$)
$b \quad$ Width; in
$\phi \quad$ Cent, $1 / 100$ of a "semitone," or $1 / 1200$ of an "octave"; dimensionless
$\bar{\phi} \quad$ Coefficient of inharmonicity of string; cent
$c_{\mathrm{B}} \quad$ Bending wave speed; in/s
$c_{\mathrm{L}} \quad$ Longitudinal wave speed, or speed of sound; in/s
$c_{\mathrm{T}} \quad$ Transverse wave speed; in/s
c.d. Common difference of an arithmetic progression; dimensionless
c.r. Common ratio of a geometric progression; dimensionless
cps Cycle per second; 1/s
$D \quad$ Outside diameter; in
$D_{\mathrm{i}} \quad$ Inside diameter of wound string; in
$D_{\mathrm{m}} \quad$ Middle diameter of wound string; in
$D_{0} \quad$ Outside diameter of wound string; in
$D_{\mathrm{w}} \quad$ Wrap wire diameter of wound string; in
d Inside diameter, or distance; in
$E \quad$ Young's modulus of elasticity; psi, lbf/in ${ }^{2}$, or mica/(in $\cdot \mathrm{s}^{2}$)
$F \quad$ Frequency; cps
$F_{\mathrm{c}} \quad$ Critical frequency; cps
$F_{\mathrm{n}} \quad$ Resonant frequency; cps
$\bar{F}_{\mathrm{n}} \quad$ Inharmonic mode frequency of string; cps
$f \quad$ Force; lbf, or mica•in/s ${ }^{2}$
f.r. Frequency ratio; dimensionless
$g \quad$ Gravitational acceleration; $386.0886 \mathrm{in} / \mathrm{s}^{2}$
$h \quad$ Height, or thickness; in
$I \quad$ Area moment of inertia; in ${ }^{4}$
i.r. Interval ratio; dimensionless
$J \quad$ Stiffness parameter of string; dimensionless
K Radius of gyration; in
$k \quad$ Spring constant; lbf/in, or mica/s ${ }^{2}$
$L \quad$ Length; in, cm, or mm
$\ell_{\mathrm{M}} \quad$ Multiple loop length of string; in
$\ell_{\mathrm{S}} \quad$ Single loop length of string; in
l.r. Length ratio; dimensionless
lbf Pounds-force; mica•in/s ${ }^{2}$
lbm Pounds-mass; 0.00259008 mica

M/u.a. Mass per unit area; mica/in ${ }^{2}$, or lbf. $\mathrm{s}^{2} / \mathrm{in}^{3}$
$M /$ u.l. Mass per unit length; mica/in, or $\mathrm{lbf} \cdot \mathrm{s}^{2} / \mathrm{in}^{2}$
$m \quad$ Mass; mica, or lbf. $\mathrm{s}^{2} /$ in
$n \quad$ Mode number, or harmonic number; any positive integer
$P \quad$ Pressure; psi, lbf/in ${ }^{2}$, or mica/(in $\left.\cdot \mathrm{s}^{2}\right)$
$p \quad$ Excess acoustic pressure; psi, lbf/in ${ }^{2}$, or mica/(in $\left.\cdot \mathrm{s}^{2}\right)$
psi Pounds-force per square inch; lbf/in ${ }^{2}$, or mica/(in•s ${ }^{2}$)
$q \quad$ Bar parameter; dimensionless
$R \quad$ Ideal gas constant; in $\cdot \mathrm{lbf} /\left(\right.$ mica $\left.\cdot{ }^{\circ} \mathrm{R}\right)$, or $\mathrm{in}^{2} /\left(\mathrm{s}^{2} \cdot{ }^{\circ} \mathrm{R}\right)$
$r \quad$ Radius; in
$S \quad$ Surface area; in ${ }^{2}$
SHM Simple harmonic motion
$T \quad$ Tension; lbf, or mica•in/s ${ }^{2}$
$T_{\mathrm{A}} \quad$ Absolute temperature; dimensionless
$t \quad$ Time; s
$U \quad$ Volume velocity; in $^{3} / \mathrm{s}$
$u \quad$ Particle velocity; in/s
$V \quad$ Volume; in ${ }^{3}$
$v \quad$ Phase velocity; in/s
$W \quad$ Weight density, or weight per unit volume; lbf/in ${ }^{3}$, or mica/(in $\left.{ }^{2} \cdot \mathrm{~s}^{2}\right)$
$w \quad$ Weight; lbf, or mica•in/s ${ }^{2}$
$Y_{\mathrm{A}} \quad$ Acoustic admittance; in $^{4} \cdot \mathrm{~s} /$ mica
$Z_{\mathrm{A}} \quad$ Acoustic impedance; mica/(in $\left.{ }^{4} \cdot \mathrm{~s}\right)$
$Z_{\mathrm{r}} \quad$ Acoustic impedance of room; mica/(in $\left.{ }^{4} \cdot \mathrm{~s}\right)$
$Z_{\mathrm{t}} \quad$ Acoustic impedance of tube; mica/(in $\left.{ }^{4} \cdot \mathrm{~s}\right)$
$Z_{\mathrm{M}} \quad$ Mechanical impedance; mica/s
$Z_{\mathrm{b}} \quad$ Mechanical impedance of soundboard; mica/s
$Z_{\mathrm{p}} \quad$ Mechanical impedance of plate; mica/s
$Z_{\mathrm{s}} \quad$ Mechanical impedance of string; mica/s
$Z_{\mathrm{R}} \quad$ Radiation impedance; mica/s
$Z_{\mathrm{a}} \quad$ Radiation impedance of air; mica/s
$z \quad$ Specific acoustic impedance; mica/(in $\left.{ }^{2} \cdot \mathrm{~s}\right)$
$z_{\mathrm{a}} \quad$ Characteristic impedance of air; $0.00153 \mathrm{mica} /\left(\mathrm{in}^{2} \cdot \mathrm{~s}\right)$

Greek

Δ	Correction coefficient, or end correction coefficient; dimensionless
$\Delta \ell$	Correction, or end correction; in, cm, or mm
δ	Departure of tempered ratio from just ratio; cent
γ	Ratio of specific heat; dimensionless
θ	Angle; degree
κ	Conductivity; in
Λ	Bridged canon string length; in
Λ_{A}	Arithmetic mean string length; in
Λ_{G}	Geometric mean string length; in
Λ_{H}	Harmonic mean string length; in

$\lambda \quad$ Wavelength; in
$\lambda_{\mathrm{B}} \quad$ Bending wavelength; in
$\lambda_{\mathrm{L}} \quad$ Longitudinal wavelength; in
$\lambda_{\mathrm{T}} \quad$ Transverse wavelength; in
$\mu \quad$ Poisson's ratio; dimensionless
$\Pi \quad$ Fretted guitar string length; mm
$\pi \quad \mathrm{Pi} ; \approx 3.1416$
$\rho \quad$ Mass density, or mass per unit volume; mica/in ${ }^{3}$, or $\mathrm{lbf} \cdot \mathrm{s}^{2} / \mathrm{in}^{4}$
$\tau \quad$ Period, or second per cycle; s

Musical Mathematics: On the Art and Science of Acoustic Instruments

(C) 2000-2011 Cristiano M.L. Forster All rights reserved.
www.chrysalis-foundation.org
February 18, 2011

Index

Internet Version: no diacritics

A
Abul-Salt, 628, 630-632
Acceleration
of bar, 156-158
definition, 4
dimensional analysis, 4, 6
English Gravitational System, 9ff.
consistent system, 9-10, 14-15
experiment, 8-11, 15
gravitational, 6-7, 10-12, 14
of mass
mica, 14-16
slug, 10-11
Newton, 5-6
standard gravity, 11-12
of string, $2-3$
Adiabatic bulk modulus
of air, 22
definition, 21-22
Admittance. See Flutes
Ahobala, 93, 587-591
Al-Din, Salah, 761-762
Al-Farabi, Abu Nasr, 93, 326, 354-355, 366, 375, 378, 401, 610, 622, 625, 628, 632-666, 669,
673-674, 676-677, 679-681, 696, 701-707,
709-710, 712, 715, 717, 720-722, 727, 733-736,
749-752, 754-755, 757-758, 771
Al-Faruqi, Lois I., 641-642, 648, 760
Al-Isfahani, Abul-Faraj, 619-620, 624
Al-Jurjani, 401-403, 448, 610, 626-631, 707,
717-722, 726-727, 731-733, 744, 746, 748
Al-Khulai, M. Kamil, 749, 755
Al-Kindi, Ishaq, 93, 334, 611-617, 619-620, 642-643, 646, 709-710, 755
Al-Mauaili, Ishaq, 619-620, 622
Al-Sanusi, Al-Manubi, 402, 720
Alexander the Great, 610
Ambisonance, 779 n .74
Ancient length ratios (a.l.r.)
definition, 75-77, 287
Al-Farabi, 378
Needham, 487
equations, for stopped (bridged) string, 77
Euclid, 76, 81-82, 302-307
Greek ratios; multiple, epimore, and epimere, 286-287

Latin ratios; superparticular and superpartient, 384-385
Ptolemy, 321-322
string length of 120 parts, 316-317
Ramamatya, 568-573
Rameau, 431-434, 442-447, 452
Ssu-ma Ch’ien, 486-487
vs. frequency ratios, $75-76,91,93,305,307,427$, 431, 487, 576-577, 587
vs. modern length ratio, 305-307, 427, 440-441
vs. "vibration ratios," 85-86, 93, 435-436
vs. "weight ratios," 83, 85-86, 93
Zarlino, 378, 436, 452
Antinodes. See Bars, rods, and tubes; Flexible
strings; Just intonation, Sauveur; Resonators, tube
Arabian musical terms. See also Scales, Arabian 24-TET

5 nim (Pers. lowered) notes, 756, 759
5 tik (Pers. raised) notes, 756, 759
7 fundamental notes; naghamat (notes), asasiyyah (fundamental), 756, 759
7 half notes, or "semitones"; arabat (sing. arabah, half note), 756, 759
24 quarter tones, Mashaqah, (sing. rub, quarter; pl. arba, quarters), 756, 759
interval
Al-Farabi
awdah (whole step), 355, 647
fadlah (half step), 355, 647
Al-Jurjani
baqiyyah, limma, [L], 721-723
fadlah, comma of Pythagoras, [C], 722-723
mutammam, apotome, $[\mathrm{L} \times \mathrm{C}], 722-723$
tanini, double-limma plus comma,
$[\mathrm{L} \times \mathrm{L} \times \mathrm{C}], 721-723$
tatimmah, double-limma, $[\mathrm{L} \times \mathrm{L}], 722-723$
mode
6 hierarchical functions of tones: qarar, quwwah, zahir, ghammaz, markaz, mabda, 738
46 Modern Maqamat (sing. maqam, position or place; mode), 738, 761-771, 786n. 209
Al-Farabi, 8 Ajnas (sing. jins, genus or kind; mode), 640, 646-655

Arabian musical terms (Continued)
Al-Munajjim
8 majari (sing. majra, course or path; mode), 622-625
and Philolaus' diatonic scale, 624
Ibn Sina
12 shudud (sing. shadd), primary or principal mode, 727
Mustaqim (direct, straight, or regular mode), Melodic Mode 8, 681-682, 685, 727, 754
majra (course or path; mode), 617, 622ff.
Safi Al-Din
6 awazat (sing. awaz; also shubah), secondary or derived mode, 727, 730-733, 744
12 shudud (sing. shadd), primary or principal mode, 726-731, 737, 740-743, 767-768
Rast (Pers. direct, straight, or regular mode), Melodic Mode 40, 727-730, 733, 740-741, 746-748
Arabian ratios. See also Greek ratios; Latin ratios apotome

Al-Farabi, 636, 655
Al-Jurjani, 722-723
Al-Kindi, 334, 611, 615-616
apyknon, Al-Farabi, 659-663
comma of Pythagoras (ditonic comma)
Arabian theory
Al-Farabi, 655, 702-706
Al-Jurjani, 722-723
Al-Kindi, 611, 615-616, 620
of tunbur and $u d$, ancient, 696-697
variants of, notation, 697-701
Al-Farabi's tunbur of Khurasan and original tunbur, 696-706
Safi Al-Din, First Ud Tuning, 712-713
Turkish theory, modern
of tunbur, 733-737
variants of, notation, 734
epimere, Al-Farabi, 661-663
epimore
Al-Farabi, 661-663
Ibn Sina, 673-676, 678-679
limma
Al-Farabi, 633, 636-640, 643, 655-656, 702-707
Al-Jurjani, 722-723
Al-Kindi, 334-335, 611, 615-617
double-limma, 697, 699-700, 703-705, 722-723
Ibn Sina, 667-668, 671, 682-685
Safi Al-Din, 708-713, 722-723, 741-743
triple-limma, 722-723, 739-745, 767
Turkish theory, modern, 736-737
triple-limma, 739-745, 767
"minor third," oldest $u d$ tuning, 3-limit ratio, 620-622
Persian middle finger fret, Al-Farabi's uds, 17-limit ratio, 634-639, 650-651, 653
"neutral second"
Arabian theory, modern
46 Maqamat, 763-766
of basic 16 -tone scale, 770-771
Safi Al-Din, 84 Melodic Modes, Second Ud Tuning; in six of nine unchanged modes, 767-768
tik Zirkulah [Db], 756
origins in near-equal divisions of intervals; Ptolemy, Al-Farabi, and Ibn Sina, 677-681
Persian theory, modern
of basic 17 -tone scale, 770
Farhat
of 2 tars and 3 setars, two different kinds, 686-689
12 Dastgaha, 692-696
as tone on $u d$
Al-Farabi
Fret 5 on 12-fret $u d, 641-643$
Frets 3 and 4, Mujannab frets, on 10-fret ud, 632-635, 639, 673-674
Ibn Sina
Fret 2, Assistant to the middle finger of Zalzal fret, 668, 671, 673-674
two different kinds, 672
Safi Al-Din, Fret 2, Mujannab, Anterior
fret, Second Ud Tuning, 714-716
as tone or interval of a genus or mode
Al-Farabi, Jins 2/ Jins 8, 651-654, 676-677, 679-680
Ibn Sina
11 Melodic Modes, 681-685
Diatonic Genus 4 and 7, 674-677
Safi Al-Din, 84 Melodic Modes, Second Ud Tuning, 724-725, 729
"neutral seventh"
Arabian theory, modern
Awj [Bظ], 749, 756, 758-759
of basic 16 -tone scale, 770
used to justify 24-TET
D'Erlanger, 755-758
Marcus, 760-761
historical context of, Al-Farabi's and Ibn Sina's uds, 749-754
"neutral third"
Arabian theory, modern
of basic 16-tone scale, 770
Safi Al-Din, 84 Melodic Modes, Second Ud Tuning; in six of nine unchanged modes, 767-768
Sikah [Eظ], 749, 756, 758-761
fasilah (genus), 761-762, 765
maqam, 767-769
used to justify 24-TET
D'Erlanger, 755-758
Marcus, 760-761
historical context of, 749, 754-755, 761
Farmer, 716
origins in near-equal divisions of intervals;
Ptolemy, Al-Farabi, and Ibn Sina, 677-681
Persian theory, modern
of basic 17 -tone scale, 770
Farhat
of 2 tars and 3 setars, two different kinds, 686-689
12 Dastgaha, 692-696
as tone on $u d$
middle finger of Zalzal fret
Al-Farabi, 11-limit ratio
Fret 8 on 10-fret $u d, 634-640$
Fret 9 on 12-fret ud, 641-645
Ibn Sina, 13-limit ratio, Fret 5, 667, 671-674, 676-677
Safi Al-Din, Fret 5, Persian middle finger fret, Second Ud Tuning, 714-717
as tone or interval of a genus or mode
Al-Farabi, Jins 2, 651-654, 676-677, 679-680
Ibn Sina
11 Melodic Modes, 681-686
Diatonic Genus 7, 675-677
Safi Al-Din, 84 Melodic Modes, Second Ud Tuning, 724-725, 729
Ptolemy's classifications in
Al-Farabi, 658-659
Ibn Sina, 678-679
Safi Al-Din, 711-713
emmelic/melodic intervals
B (baqiyyah or fadlah), 721-723, 740
J (tatimmah or mutammam), 721-723, 740, 744
T (tanini), 721-723, 727, 740, 744
pyknon, Al-Farabi, 659-663
"quarter-tone"
4 modern musical symbols of, 713-714
half-flat and half-sharp signs, Racy, 760
koron and sori signs, Farhat, 640
Arabian theory
Al-Farabi, origin and function of ratio $33 / 32$, 354-355
Ibn Sina, origin and function of ratio $36 / 35$, 679
Marcus
ambiguity of "quarter-tones" in musical practice, 760-761
description of Mashaqah's twenty-four
"quarter" tones, 759
schisma
definition, 373, 697
variants of, notation, 697-701
Al-Farabi's tunbur of Khurasan and original tunbur, 696-707
Safi Al-Din
First Ud Tuning, 373-375, 710-713, 717
Second Ud Tuning, 716
superparticular (epimore)
Al-Farabi, 660-661
Ibn Sina, 678-679
superpartient (epimere), Al-Farabi, 661
Arabian scales. See Scales, Arabian
Arabian tetrachords
Al-Farabi
8 Ajnas
description of, 646-648
fractional and integer parts of tones, Aristoxenian theory, 648-649
interpretation of
as length ratios on $u d, 650-655$
modern, in cents, 650
Jins 2, 676-677, 679-680
Jins 8, 679-680
conjunct, three standard modes, 644-645
genera, soft genus and strong genus, 659-660
classification of 15 tetrachords
soft ordered consecutive and nonconsecutive, 660-663
strong doubling, strong conjunct, and strong disjunct, 661-663
Greater Perfect System. See also Greek tetrachords
three conjunct/disjunct systems for the distribution of, 662-666
inversion of intervalic order
Aristoxenus' tetrachords, 648
Philolaus' tetrachord, 648-649
Al-Kindi's $u d, 612$
description of, 613
Philolaus' tetrachord, three harmoniai, 616-617
classification, modern
9 fasail (genera): seven tetrachords, one trichord, and one pentachord, 762
46 Maqamat, 763-766
Safi Al-Din, 84 Melodic Modes, Second Ud Tuning
9 modern maqamat, interval patterns identical to, 767-768
32 modern tetrachords and modes, traceable to, 763-768
fasail (sing. fasilah, family or genus), maqamat with similar lower tetrachords, 761-762

Arabian tetrachords (Continued)
jins al-asl or jins al-jidh, primary lower tetrachord, 761, 767-769
jins al-far, secondary upper tetrachord, 761, 767-769
munfasil, disjunct, 767
mutadakhil, overlapping, 767
muttasil, conjunct, 767
Ibn Sina
11 Melodic Modes, 681-686
12 Dastgaha, Persian theory, modern, 692-696
16 tetrachords, based on strong and soft genera, 676
construction of, with epimore ratios, 673-674
diatonic genus, preferred over chromatic and enharmonic genera, 673
Diatonic Genus 4 and 7, 13-limit ratios, 674-677, 679-681
Rast or Mustaqim, 727-731
modal origins
Arabian, on Al-Farabi's and Ibn Sina's $u d \mathrm{~s}$, 747-754
Turkish, on Safi Al-Din First Ud, 732-733, 744-748
Safi Al-Din
84 Melodic Modes
First and Second Ud Tunings, 724-725
35 modes, conjunct tetrachord/ pentachord combinations of, 722-726
49 modes, conjunct tetrachord combinations of, 722-726
of seven-by-twelve matrix system, 728-729
6 Awazat (secondary or derived), 730-733
12 Shudud (primary or principle), 726-727, 730-733
Turkish theory, modern, on First Ud
5 of 6 'Variant' Maqamat, 744-745
10 of 13 Basic Maqamat, 740-744
Archimedes, 265, 610
Archytas, 86-89, 92, 280, 283, 288-289, 297, 311, 318
Area moment of inertia. See Bars, rods, and tubes
Arel, H. Sadettin, 738
Aristoxenus, 280, 289, 308-321, 624-625, 642, 646-649, 651, 655
Arithmetic divisions/progressions. See also Cents, harmonic series; Means
definition, 253-254
Archytas, 86-87
frequency ratios
of "double-octave and a fifth," ratio $6 / 1$, 426-428
of "fifth," ratio $3 / 2,437$

Rameau, 434-436, 441-444
of "octave," ratio $2 / 1,91-93,437$
of "triple-octave," ratio $8 / 1$, Rameau, 428-433
of harmonic series, 254-255
length ratios
of "double-octave and a fifth," ratio $6 / 1$
Rameau, in context of dual-generator, 444-446
Salinas, 402-403
Stifel, 386-390
Zarlino, 392, 394
of "fifth," ratio $3 / 2,325,396,437$
Rameau, 442-444, 446-448
Safi Al-Din, 381
Stifel, 401
Zarlino, 377-378, 382-384, 385-386, 399-401
of five tetrachords, Ptolemy, 328
of "fourth," ratio 4/3, 297, 325
Ptolemy's Even Diatonic, 329
of "octave," ratio $2 / 1,87-89,91,295-296,437$
ancient length ratios $v s$. frequency ratios, 87-91
Ibn Sina, 379-381
Ptolemy, 295-297, 324
Rameau, 431-432
Zarlino, 382-383
of "whole tone," ratio $9 / 8$
Al-Farabi, 354-355, 636
Cardan, 355
Galilei, Vincenzo, 355-356
Mersenne, 356
Ptolemy, 354, 636
Zarlino, compound unities, 390-391
Aron, Pietro, 342, 345, 347, 352-353
Ayyar, C. Subrahmanya, 586

B

Bach, Johann S., vi, 350
Barbera, Andre, 82, 308
Barnes, John, 349-350
Bars, rods, and tubes
antinode (clamped-free bar)
bending (BA), 175
location of, first four modes (bar, rod, and tube), 177
displacement (DA), 175
local reduction at, tuning process, 176-177
antinode (free-free bar)
bending (BA), 153-154
bending moment at, 155-157
local reduction at, tuning process, 160-163
location of, first five modes (bar, rod, and tube), 162
displacement (DA), 153
experiment, 153-154
area moment of inertia (bar, rod, and tube), 159
bending
stiffness, 158
and bending moment, direct
proportionality, 159-160
effect on mode frequencies, 159
as restoring force, 148,152
tuning effect on, 160
wave speed, 149-150, 159
and bending wavelength, inverse proportionality, 149
and dispersion, 148-149
effect on inharmonic frequencies, 148-149
experiment, 149, 153-154
stiffness effect on, 147-148
tuning effect on, 160
wavelength, 150
effect on bending moment, 154
experiment, 149
dispersion
definition, 149
variables, indicators of, 152-153
mode
frequency (clamped-free bar), 174-175
ratios of second, third, and fourth modes, 174
frequency (free-free bar), 148-149, 151-152
and bending moment, 154
and height, direct proportionality, 158-160
ratios of second, third, and fourth modes, 148
theoretical vs. actual, rosewood test bar, 163
tuning effect on, 160-161
shape (clamped-free bar), of first three modes, 175
shape (free-free bar), of first three modes, 153 node (clamped-free bar)
bending moment and shear force at, 175
local reduction at, tuning process, 176-177
locations of, first four modes (bar, rod, and tube), 177
node (free-free bar)
bar mounting considerations, 163, 170-171
locations of, first five modes (bar, rod, and tube), 162
shear force at, 155-157
plane sections (bar, rod, and tube), 159
radius of gyration (bar, rod, and tube), 159
restoring forces (clamped-free bar), 154
bending moment, 175-176
shear force, 175-176
tuning effect on, 176-177
restoring forces (free-free bar), 154
bending moment, 154-161
effect on geometry of bar elements, 156
shear force, 154-158, 160-161
tuning effect on, 160
tuning process (clamped-free bar), 176-177
mass loading, bars vs. reeds, 178
tools and techniques, 177
tuning process (free-free bar), 160-161
bass marimba bar
frequencies, first three modes; before, during, and after tuning, 165
frequency changes
eighteen analysis/decision steps, 168-170
eighteen tuning steps, 165-168
length limitations of, 164-165
triple-arch design, bar profile, 161-163
tuning function of first three antinodes, 161-163
higher mode frequencies
effect on pitch perception of fundamental, 163-164
tuning possibilities of, 164
tools and techniques, 164
treble marimba bar
frequencies, first two modes; before and after tuning, 171
length limitations of, 171
single-arch design, bar profile, 171
tuning function of first two antinodes, 170-171
Bass Canon
construction of, 800, 805
dimensions, 805
Plate 3, 847
Bass Marimba
24 bars of, frequency ratios, 827
dimensions of, longest and shortest bars, 826
mode tuning of, 161-165
properties of, Honduras rosewood, 172-173, 885-886
C_{2} cavity resonator, Resonator II, 221
dimensions
inside, 217
outside, 220
tuning of, 219-222
dimensions, 826
Plate 8, 852
Beat rates. See also Inharmonic strings
of 12-TET, 136
"fifth," 136
"fourth," 137
"major third," 136-137, 139-140, 146n. 28
beating phenomenon, 135-137, 365
effect on musical quality, $108,118,135$
limits of human perception, 136
Huygens, on the consonance of 7 -limit ratios: $7 / 5$,
$10 / 7$, and $7 / 4,364-365$
Ramamatya, description of dissonance on vina, 572

Beat rates (Continued)
of shimmering "octave," 509, 515
Balinese gamelan
gender rambat, 529
penjorog (beat rate), 524
Javanese gamelan
gender barung, 516, 519-522
saron demung, 509-511
of string
consonance vs. dissonance, 365
flexible canon strings $v s$. stiff piano strings, 140-142
small integer ratios vs. large integer ratios, 138-140
harmonics
coincident, 136ff.
intermediate, 137ff.
Beeckman, Isaac, 406
Benade, Arthur H., 126, 235, 247
Bending moment. See Bars, rods, and tubes, restoring forces
Benedetti, Giovanni Battista, 415-416
Bernoulli, Daniel, 426
Bharata, 540-550, 552-562, 564, 572, 577, 598-599
Bhatkhande, V.N., 581, 587, 594-596
Boehm, Theobald, 235
Boethius, 284, 380
Break strength
definition, 35
of string
high-carbon spring steel music wire, 884
plain, $35,111,134$
wound, 40
Brothers of Sincerity (Ikhwan al-Safa), 620-622
Brown, Robert E., 528
Brun, Viggo, 458
Buskirk, Cheryl M., viii

C

Canons. See also Bass Canon; Harmonic/Melodic Canon; Little Canon
Arabian qanun, ancient instrument, 628
Abul-Salt, 628, 630-632
Al-Farabi, 632
Al-Jurjani, 629-631
hamila (moveable bridge), 628, 631-632
Ibn Sina, 670-672
Ibn Zaila, 628
from qanun to $u d$, evolutionary process, 632, 669-670
construction requirements
bridge, 65
original design, 792-794
string, 65,118
function of, 77-78, 80, 792
Greek kanon
definitions, 65

Euclid, 76, 81-82
Plato, 91-92
Ptolemy, 78
Canright, David R., v-vi, 101, 156, 877
Plate 15, 859
Cardan, Jerome, 355
Cents
calculation
adding and subtracting, 269
conversion
cents to decimal ratio, 270
cents to integer ratio. See Euclidean algorithm
frequency ratio to cents, 268-269
Ellis, 1200th root of 2, 267
increasing or decreasing frequency by cents, 270-271
interval comparison, 270
definition, 268
exponent
definition, 257-258
exponential function, 257
as logarithmic function, three aspects, 258
first law of, 259
four laws of, 277n. 11
Stifel's description, 276n. 6
harmonic series
as arithmetic progression, 254-255
human process of adding intervals in sequences, 260-265
no human perception of interval patterns, 254
as geometric progression, 254-255
human perception of interval patterns, 254-255
mathematical process of multiplying frequencies in sequences, 256-262, 263-265
intervals of, verbal terms vs. mathematical terms, 64-65, 256
logarithm
antilogarithm., 259, 262 ff .
common
base $1.00057779,109,267-268$
base 2, 262-264, 274
base 10, 258-262
definition, 258
four laws of, 278 n .13
guitar frets, 271-273
and human hearing, adding process, 262
logarithmic function, 258
as exponential function, three aspects, 258
musical slide rule, 273-275
Napier, inventor of, Greek logos + arithmos, 257
natural, base $e, 109,258$
"octave" equivalence
definition, 257
as human trait, 257
ratio, simplification of, 257
Chalmers, John H., viii, 308
Cheve System
cipher and cipher-dot notation, 508, 535n. 2
letter-dot notation, 599
Chiao Yen-shou, 502
Ch'ien Lo-chih, 502
Ch'in (qin)
construction of, 488-489
as microtonal instrument, 496
Chinese scales. See Scales, Chinese
Ching Fang, 502
Chrysalis
construction of, 788-789
dimensions, 790
Plate 1, 845
Plate 13, 857
score, excerpt from Song of Myself, 800-802
stringing and tuning of, for Song of Myself, 794-797
Chrysalis Foundation, 839, 841, 843
New Music Studio, 842-843
Workshop, Plate 16, 860
Chu Hsi, 492
Chu Tsai-yü, 354, 502-504, 542, 569, 749
Chuquet, Nicolas, 339-341
Cleonides, 309-310, 649, 655
Cohen, H.F., 139
Comma of Didymus. See Greek ratios, comma
Comma of Pythagoras. See Arabian ratios; Greek
ratios, comma
Compression and rarefaction
alternating regions
of plane wave, in solid, liquid, gas, 186-187
of sound wave, 183-184
of bar-to-cavity resonator coupling, 214, 222
of bar-to-tube resonator coupling, 196
definition, 130-131, 183, 200
dependence on wave speed, 131
in infinite tube, 200-203
in resonator
cavity, 213, 219
tube, 190-196, 203-208
of soundboard, inefficient regions, 133
of string, leading and trailing surfaces, 130-131, 183-184
Conductivity. See Flutes, admittance
Cremer, L., 123, 131
Cristofori, Bartolomeo, 118, 130
Crocker, Richard L., 308
Crusoe, Robinson, 788

D

D'Alembert, Jean le Rond, 423
Dattila, 545, 548-549, 558
de Fontanelle, Bernard Le Bovier, 438
de Villiers, Christophe, 406
D'Erlanger, Baron Rodolphe, 625, 666, 675, 755, 758-760
Descartes, Rene, 404
Diamond Marimba, 13-Limit
49 bars +5 bars of, frequency ratios, $824-825$
dimensions of, longest and shortest bars, 825
mode tuning of, 171-172
properties of, Honduras rosewood, 172-173, 885-886
construction of, 825-826
dimensions, 825
expansion of
Meyer's 7-limit Tonality Diamond, 824
Partch's 11-limit Diamond Marimba, 824
Plate 7, 851
resonator
airtight seal, making, 211
dimensions of lowest, G_{3} at $196.0 \mathrm{cps}, 198$
Didymus, 280, 319, 329-332, 664
Dieterici, Friedrich, 620
Dispersion
definition, 104, 149
variables, indicators of, 152-153
Downbearing force
of string on canon bridge, 792
string's angle of deflection, 794

E

el-Hefni, Mahmud, 612
Ellis, Alexander J., 265, 267
End corrections. See Flutes, corrections;
Resonators, cavity; Resonators, tube
Equal temperaments
12-TET, 361-362
$1 / 12$ ditonic comma
calculation of, 352-353
cumulative reduction of twelve consecutive
"fifths," 353-354
cent comparisons
to 3 -limit, 5 -limit, 7 -limit, and $1 / 4$-Comma
Meantone scales, 376-377
Ramis vs. Stevin, 375-376
discovery of
Chu Tsai-yü, 502-504
Stevin, 358-362
ditonic comma (comma of Pythagoras), definition, 335, 350
"fifths"
circle of 12, That produces, 352-353
spiral of 12 flat "fifths," That closely
approximates, Liu An, 500-501

Equal temperaments (Continued)
frequencies of eight octaves, 879
frequency ratios, powers of the 12 th root of 2 , 271
fret equations for, 272-273
on fretted lutes and viols, 340, 348
"major third" of, two integer ratio approximations, 140
"semitone" of
approximate value, rational, ratio 18/17
Al-Farabi, 354-355
Cardan, 355
lute fretting instructions
Galilei, 355-356
Mersenne, 356-359
lutenists' preference over exact value, 357
origin of, Ptolemy's arithmetic division of "whole tone," ratio $9 / 8354$
exact value, irrational, 353-354
12 th root of $2,353-354$
Chu Tsai-yü, 503
Stevin, 360-361
$v s$. eleven integer ratio approximations, to the nearest cent, 459
vs. frequencies of the harmonic series, 63-64
22-TET, Indian theory, ancient
Bharata
22-sruti scale, 540-543, 544-547
logarithmic pramana sruti, 541-542
no basis in fact, 542-543, 572-573
24-TET, Arabian theory, modern, 755-758
formulaic imposition of, 749, 755-758
on fretless $u d$, as moot issue, 760-761
Marcus
ambiguity of "quarter tones" in musical practice, 760-761
description of Mashaqah's twenty-four "quarter" tones, 759
used to justify "incorporation" of "quarter tones," D'Erlanger and Marcus, 755-758, 760-671
31-TET
Huygens, logarithmic calculations, 362-364
spiral of 31 "fifths," That closely
approximates, 362-363
53-TET
spiral of 53 "fifths," That closely approximates, Ching Fang, 502
Turkish theory, modern, close approximations of 4-, 5 -, 8 -, 9 -, and 12 -comma intervals, 736-737
60-TET, spiral of 60 "fifths," That closely approximates, Chiao Yen-shou, 502
360-TET, spiral of 360 "fifths," That closely approximates, Ch'ien Lo-chih, 502

Eratosthenes, 280, 318, 329-332
Euclid, 76, 81-82, 86, 92-93, 280, 283, 287-289, 297-298, 302-308, 311, 318, 337-339, 341, 610-611, 619, 624-625, 759
Euclidean algorithm
12-TET, eleven integer ratio approximations, 459
Brun, 458
and continued fractions, 484n. 364
for converting irrational decimal ratio to rational integer ratio approximation, 458-459
Exponent. See Cents

F

Farhat, Hormoz, 677, 686-696, 744, 759, 771-772
Farmer, Henry George, 366, 379, 401, 610, 619-621, $623-628,635,668,709,716,727$
Flageolet tones
of ch'in, 488-492
experiments
Roberts, 421
Sauveur, 424-426
of trumpet marine, 408-409
Fletcher, Harvey, 99-100, 113, 135
Flexible strings
antinode
definition, 53, 55
formation of, as regions of maximum motion, 47-48, 51-54
locations of, first six modes, 58
equations, for stopped (bridged) string
frequency, 77
length, 77
equilibrium position, dynamic, 48-49
frequency. See also Flexible strings, mode
definition, 55, 57
dimensional analysis, 55
as function of wavelength, 80
harmonic series
definition
mathematical: length ratios of subdividing string, 63-64, 427-428
verbal: frequency ratios of subdividing string, 63-64, 427-428
discovery of
infinite series, first thirty-two harmonics, Sauveur, 423-424
limited series, first six harmonics, Mersenne, 404-408
first sixteen harmonics, two series, 64
intervals of, verbal vs. mathematical, 64-65, 256
harmonics
definition, 63-64
first six on bridged canon string, 66
first sixteen of subdividing string, 64
frequency ratio, 73
ideal characteristics, 44
impedance, mechanical wave, 121
loop
count (mode number), 59, 105
definition, 59
multiple loop length, 70
ratio, 73
pattern, 59
single loop length, 59-60
ratio, 73
mode
definition, 98
frequency
definition, 59, 62
and mode wavelength, inverse
proportionality, 61
shape, first six modes, 58
node
definition, 53, 55
formation of, as points of minimum motion, 48-49, 51-54
function of, $53,116 \mathrm{n} .5$
locations of, first six modes, 58
two different kinds, 55-56
period
definition, 54, 56
dimensional analysis, 54
pulse, transverse traveling
crest and trough, 44-46
collision, 46-49
reflection, 45-46
definition, 44
and Pythagoras, 44
ratios. See also Ancient length ratios
frequency
definition, 62, 72
as function of length ratio, 80,93
of harmonics, 73
and length ratio, inverse proportionality, 63, 80
of non-harmonic tone, 73
interval
definition, 67
of harmonics, right sides of bridged canon strings, 68-69
of non-harmonic tone, 74
length
complementary, 69, 78
definition, 59, 69-70
and frequency ratio, inverse proportionality, 63, 80
human comprehension of, $79,80,93$
of non-harmonic tone, 73
simple harmonic motion (SHM)
definition, 50
of particle motion, in cord/string, 50-51
superposition
definition, 48
interference
constructive, 47-48
destructive, 48-49
standing wave, production of, 48, 51-54
wave
standing
definition, 2, 48, 51-52
of first six modes, 58
motion of, 52-53
and sound production, 53-54
transverse traveling
in cord, 50-51
definition, 50, 183
in string, 2-3, 44-53, 58
superposition of, 51-54
wave speed, transverse traveling, 60-61
wave train (waveform)
definition, 50-51
frequency of, 55,57
period of, 54, 56
as transverse traveling wave, 50-51
wavelength
definition, 54
equations, 60, 71
of first six modes, 58
as function of frequency, 80
Flutes
admittance
complex/non-complex, 233
definition, 233
terminating, 234
and cutoff frequency, 247
of embouchure hole and flute bore, 235
of tone hole, flute bore, and tube-piece, 236
conductivity
definition, 233
of duct, fictitious and actual, 234-236
of embouchure hole and flute bore, 234
of tone hole diameter, limitations, 233-234
corrections, 232
at embouchure hole, 228, 231-232
empirical data
concert flute, 235
simple flute, 240
at key pad, 228
Nederveen and Benade, 237
at open tube end (end correction), 228, 231-233
at tone hole, 228, 231-232, 236, 244-245
Nederveen, 238
cutoff frequency, Benade, 247
embouchure hole, typical dimensions
concert flute, 235

Flutes (Continued)

simple flute, 240
frequency
when known, predicting flute dimension and tone hole location, 229-241
when unknown, determining from flute dimension and tone hole location, 242-246
impedance, acoustic, non-complex, 233
intonation, 227
at embouchure hole
airstream, 227, 240
blowing technique, 236
lip coverage, 227, 233, 240
flute tube effect on, 235-236
making, simple flute, 236, 246-248
critical variables
embouchure hole correction, 240
flute wall thickness, effect on timbre, 247
musical interval, Nederveen, 237-238
tone hole diameter, 239, 240-242
speed of sound in, 229
subharmonic series, 246
standing wave, 231, 234, 245, 248n. 10
substitution tube, Nederveen, 229-230
two different kinds, 230-232
tone hole
dimension and location
concert flute, 239
simple flutes, 241
from embouchure hole, strategy for length calculation, 231-232
tube length
closed-closed (substitution tube), acoustic and effective, 230-232
effective
at embouchure hole, approximate, 234-235 Nederveen, 233
at tone hole, exact, 236 Nederveen, 237
open, measured vs. effective, 229-231
tuning process, simple flute, 236
variables, twenty-seven symbols, 228-229
Force. See also Restoring force; Weight; Weight
density
definition, 5-6, 8
English Engineering System, 9, 12, 16
pounds-force (1 lbf), 7-9
inconsistent system, 9-10
English Gravitational System, 9
pounds-force (1 lbf), 10 ff .
consistent system, 9-11, 14-15
experiment, $7-8,10,15$
of gravity, $6-8,10-12$
of muscular effort, $5,8,16$
Newton, 2, 5
of spring, 11
of tension, 18-19
unit, 10, 14-15
Forster
Cris, v-viii, 839-844
Plate 13, 857
Plate 15, 859
Heidi, viii, 839-844
Plate 14, 858
Plate 15, 859
Forster instruments. See Bass Canon; Bass
Marimba; Chrysalis; Diamond Marimba,
13-Limit; Glassdance; Harmonic/Melodic
Canon; Just Keys; Little Canon; Simple Flutes
Franklin, Benjamin, 828
Frequency
of bar
clamped-free, 174-175
mass loaded, 178
free-free, 148, 151-152, 158
definition, 54-55
dimensional analysis, 55
of longitudinal mode: in plain string, uniform bar, and fluid in tube, 187
of resonator
cavity, 215-217
tube
closed, 210
closed-closed, 230
open, 209
of spring-mass system, 185, 219, 223n. 9
of string
flexible, 58-62, 102-103
stiff, 99, 105-107, 112
and wavelength
as function of, 80-93
inverse proportionality, 61-62
Frequency ratios. See Flexible strings, ratios
Freud, Sigmund, 557
G
Gaffurio, Franchino, 367
Galilei
Galileo, 283, 338, 356
Vincenzo, 315, 355-356, 358
Gamelan. See also Scales, Indonesian
instruments
Bali
bar percussion instruments, built in pairs:
pengumbang (low) and pengisep (high), 524, 532-533
penjorog (beat rate) of, 524
shimmering "octaves" of, tuned
sharp, 524
sharp and flat, 529-530
gangsa (saron), 533
gender
dasa, 523
jegogan, 524
rambat, 529-530, 532
tjalung (jublag), 530-534
wayang, 522
suling gambuh, 524-528, 530, 532
trompong, 523-524, 527-528, 532
Java
bar percussion instruments, beat rates
four different kinds, 522
of tumbuk tuning, 519-522
gender
barung, 513-517, 519-521
panerus, 519
saron
demung, 509-511, 517-520
ritjik (saron barung), 510-511
shimmering "octaves," tuned
sharp, 509-511
sharp and flat, 515-516, 519-521
orchestras, 508
Bali
Court of Tabanan, 526
Kuta Village, 523
Pliatan Village, 524, 530-534
Puri Agung Gianyar, 529-530
Tampak Gangsal, 523, 527
Java
Kangjeng Kyahi Sirat Madu, 520
Kyahi Kanjutmesem, 509-510, 515-516, 519-522
Geometric divisions/progressions. See also Cents, harmonic series
definition, 254
Archytas, 86-87
of harmonic series, 254-255
length ratios
of 12-TET
Chu Tsai-yü's solution, 503-504, 542
Stevin's solution, 358-362, 542
of "fifth," ratio $3 / 2$, Chuquet, 339-341
of "fourth," ratio 4/3
Aristoxenus, 309-318
Al-Farabi's interpretations of, especially Jins 8, 646-655
arithmetic-geometric asymptote, 313-315, 318
modern interpretations of, 309-313, 466n.75, 655
Ptolemy's interpretation of, 316-317
of "major third," ratio $5 / 4$; meantone ratio, 342-343
of "minor third," ratio $6 / 5$, Chuquet, 339-341
of "octave," ratio 2/1, 297-299
Chuquet, 399-341

Euclid's mean proportional, 297-298
Zarlino, 338-339
of "whole tone," ratio $9 / 8$
Ptolemy's rational approximation, 320
Zarlino, 338-339
Ghosh, M., 549, 556-557, 559
Glassdance
48 crystal glasses, frequency ratios, 830-831
Ptolemy's Soft Diatonic, 832
construction of, 828-830
dimensions, 832
Plates 9,10 , and $14,853-854,858$
tuning process, of brandy snifter glasses, 830-831
Govinda, 565, 574-576, 578-584
Greek ratios
classification
epimere, 285, 287
epimore, 284, 287
Euclid, 287
Ptolemy, 288, 321-323, 325-326, 328-329, 354
Pythagoreans, 288, 323
Zarlino, 397
equal, 284
Ptolemy, 324
multiple, 284, 286
Euclid, 287
Mersenne, 417
Ptolemy, 288, 321, 323
Pythagoreans, 288
multiple-epimere, 285-286
Ptolemy, 288, 319
Pythagoreans, 288, 319
multiple-epimore, 284-285
comma
of Didymus (syntonic comma), 315, 350, 363, 400, 547, 697
Aron, 344-345
definition, 344
Ramamatya, 572
Safi Al-Din, 372-374
of Pythagoras (ditonic comma), 319-320, 487, 542
12-TET, 352-354
Al-Farabi, 655
tunbur of Khurasan and original tunbur, 697-706
Al-Jurjani, 722-723
Al-Kindi, 334, 611, 615-616, 620
Aristoxenus, 314, 318
definition, 314-315, 334-335
Ramamatya, 571-572
Safi Al-Din, 372-374
Turkish theory, modern, 736-737
Werckmeister, 350-351

Greek ratios (Continued)
Euclid, 76, 81-82, 287
interval
apotome, 314-315, 319
'Apotome Scale', 336, 418-419
Ptolemy, 314-315, 319
Ramamatya, 571
apyknon, 326-327, 659-660
Al-Farabi, 660-663
Ptolemy, 328-329, 334
diesis, modern, 464n. 48
Aristoxenus, 314-315, 318
Philolaus, 299-300
diplasios, 81, 86, 286-287
diapason, 81, 407, 416
disdiapason, 407, 410
ditonon, 384
ditone, 314, 416, 633-634
epi prefix, 81, 384
epitetartos (epitetartic), 286-288, 657
epitritos (epitritic), 81-82, 86, 286-287 diatessaron, 81, 384
epogdoos (epiogdoos), 81-82, 86, 287
tonon, 82, 384
hemiolios, 81-82, 86, 287
diapente, 81, 382, 384, 412-413
limma, 300, 314-315, 319
Aristoxenus, 315-316
'Limma Scale', 336
Ptolemy, 314-315, 319-320
Ramamatya, 571
pyknon, 326-327, 659-660
Al-Farabi, 660-663
Didymus, 329-330
Eratosthenes, 229-330
Ptolemy, 326-329
schisma, 372-373
"schismatic fifth," 372-375
Nicomachus
classification, translated as Latin ratios, 486
dimoirou (two-thirds), 84, 96n. 30
hemiseias (half), 84, 96n. 30
sound (frequency) and string length, inverse proportionality, 84-85
"vibration ratio," 85
"weight ratio," 82-84, 86
Plato, 91-92
Ptolemy. See also Arabian ratios
classification, 323
emmelic/melodic (epimores smaller than 4/3), 288-289, 323-326
homophonic (multiples), 295, 323-324
symphonic (first two epimores, $3 / 2$ and $4 / 3$), 322-326
"quarter-tone," origin and function of ratios $32 / 31$ and $31 / 30,290-292$

Greek scales. See Scales, Greek
Greek tetrachords
Aristoxenus, six different kinds, 309-310
fractional and integer parts of tones, 309-310
interpretation of
arithmetic-geometric asymptote, 313-315, 318
modern, in cents, 310
Ptolemy, as length ratios, 313, 316-317, 320-321
conjunct, Terpander's heptachord, 289, 291-293
definition, 289
disjunct, Pythagoras' octachord, 289, 293
genera of; diatonic, chromatic, and enharmonic, 289-290
Archytas, 289
Aristoxenus, 289, 309-310
Ptolemy, 326-332
Greater Perfect System (GPS)
composed of four different kinds, 289-292
diatonic genus, in context of
Euclid, 303-304
Philolaus, 301
Ptolemy, 333
Euclid, description of 15 -tone "doubleoctave," 289, 302-303
harmoniai (modes) of, seven different kinds, 290-292
standard "octave" of
Dorian Mode, Greek, 301
Lydian Mode, Western, 301
three scales, based on three genera, 292
Lesser Perfect System (LPS), composed of three different kinds, 289-291
Philolaus
Diatonic, ancient and original division, 299-301, 462n.17, 464n. 47
on Al-Kindi's $u d, 615-617$
in Euclid, 302-307
plagiarized by Plato, 91-92
Ptolemy
Catalog of Scales, 318-319, 330-332
Even Diatonic, origin of Arabian "neutral second" and "neutral third" tetrachords, 329, 679-681
pyknon and apyknon, three conceptual principles for the division of tetrachords, 326-330
Soft Diatonic, unique musical quality of a minor scale, 334, 832
Tense Diatonic, origin of Western major scale, in Zarlino, 333, 832
theory of graduated consonance, mathematical/musical basis for the division of tetrachords, 321-326

Guitar frets. See Cents, logarithm
Gullette, Will, viii, 845-856, 858-860
Gupta, Abhinava, 550

H
Harmonic divisions/progressions. See also Means
definition, Archytas, 86-87
frequency ratios
of "fifth," ratio $3 / 2,437$
Rameau, 435
of "octave," ratio $2 / 1,91-93,437$
harmonic series, context of, 63-64, 80, 427-428
length ratios
of "double-octave and a fifth," ratio $6 / 1$, 426-427
Rameau, in context of dual-generator, 444-446
Salinas, 403
Stifel, 378, 386-390
Zarlino, 378, 392-395
of "fifth," ratio $3 / 2,397,437$
Rameau, 440-443, 446-448
Safi Al-Din, 381
Stifel, 401
Zarlino, 377-378, 382-383, 386, 399-401
of "octave," ratio $2 / 1,89-91,437$
ancient length ratios vs. frequency ratios, 87-91
Ibn Sina, 379-381
Rameau, 431-432
Zarlino, 382-383
of "triple-octave," ratio $8 / 1$, Rameau, 430, 432-433
Zarlino, sonorous quantities, 390-391
Harmonic/Melodic Canon. See also Canons
construction of, 790-792
bridge, original design, 792-794
dimensions, 794
Plate 2, 846
score, excerpt from Song of Myself, 800, 803-804
stringing and tuning of, for Song of Myself, 794-795, 798-799
Harmonic series. See Cents; Flexible strings; Just intonation
Harmonics. See Flexible strings; Inharmonic strings, tone quality; Just intonation
Harpsichords. See also Pianos, vs. harpsichords
Huygens, keyboard for 31-TET, 363-364
impedance ratio
air-to-soundboard, 129
soundboard-to-string, 126
inharmonicity
analysis of, 110-111
coefficients of, plain strings, 111,126
soundboard
critical frequency, 132-133
dimensions, typical
surface area, 129
thickness, 125
impedance
plate vs. soundboard, 124,126
radiation, of air at soundboard, 129
sound radiation, 133
string, D_{4} (d')
dimensions and tension, typical, 125
Hubbard, 144n. 10
impedance, 125-126
Harrison, Lou, v
Heath, Thomas L., 308
Helmholtz, Hermann, 212
resonator. See Resonators, cavity
Hitti, Philip K., 611
Hood, Mantle, 512, 517-519, 521, 524
Hsu Li-sun, 486, 492
Huang Ti, 485
Hubbard, Frank, 125
Huygens, Christiaan, 289, 362-365

I

Ibn Al-Munajjim, 619-624, 644-645
Ibn Khallikan, 619
Ibn Misjah, 619
Ibn Sina, 93, 326, 366, 378-380, 384, 435, 610, 614,
$625,628,636,666-689,692-696,703,715-716$,
$722,727,744,749-755,758-759$
Ibn Suraij, 619-620
Ibn Zaila, Al-Husain, 628
Ikhwan al-Safa (Brothers of Sincerity), 620-622
Impedance
acoustic
complex, 197
non-complex, 197
of duct, 233
of room, 199
of tube, 198
definition, 120, 127, 129, 197, 233
mechanical
complex, 120-121, 124
radiation impedance, 129
of soundboard, vs. infinite plate, 122-124
non-complex
of air at soundboard (radiation impedance), 129
of plate, 123
of string, 121
specific acoustic
complex, 127
non-complex, 127-128
of air (characteristic impedance), 128-129

Indian musical terms. See also Scales, Indian

ancient

Bharata, 540
grama (tone-system, tuning, or parent scale), 547
jati (melodic mode), three different types
(1) samsarga (combined), 549-550
(2) suddha (pure), 548-550, 552-554
(3) vikrta (modified), 548-550, 552, 555-556
4 hierarchical functions of tones: graha, amsa, apanyasa, nyasa, 548, 552, 560, 576, 602n.30, 691
laksana (properties) of, 547-548, 552, 554-555, 558-559, 602n. 30
possible influence on, 556-557
dastgah, 691
maqam, 738
patet, 512
rasa (qualities) of, 547, 557-560
raga (charm) of a note, 560-561
songs, of the theater
dhruva, 558-560
gana, spurious text, 559-560
characteristics of, 560
gitaka, 558
sruti (interval)
of 22-sruti scale, ratio analysis of $S a$ grama and Ma-grama, 544-547, 550-551
definition, 540
of harp-vina tuning experiment, 541, 543-544
of jatis, 554-555
pramana (typical), 541-543, 547
of Sa-grama and Ma-grama, 540-541, 544-545
svaras (notes)
7 svaras of Sa-grama and Ma-grama, 540-541
of 22-sruti scale, ratio analysis of $S a$ grama and Ma-grama, 544-547
definition, 540
suddha (pure), 566
of svarasadharana (overlapping note), ratio analysis of An and Ka, 549-551
vina (harp-vina), 541-544, 547, 550-551, 553, 564
gramaragas
definition, 562
and laksana
of Kudimiyamalai inscription, 562-564
of Matanga, 562-564
of Narada, 562-564
of Sarngadeva, 562-564

Matanga, 556
4 suddharagas (pure ragas), 562-563
raga (elements of melodic sound), first formal definition, 561-562
Narada, 559
7 gramaragas, first complete compilation, 559
gramaraga
first formal definition, 560
or gana (song), 559-561, 563-564
guna (qualities) of, 560
Sarngadeva, 548
gramaraga, 562-564
suddha jatis and laksana, definition, 548
svaras
suddha, 566
vikrta, 566
North India
Bhatkhande, 587
10 most popular Thats, 581, 596
Bilaval That, modern suddha scale, 592-593, 600
Narayana and Ahobala, 587
12-tone vina tuning, 587-592
samvaditva (consonant intervals), 590-592
suddha svaras (pure notes), 587
vikrta svaras (modified notes), 590
raga, 558, 564, 576, 585
Roy, 595
32 Thats, of eight-by-four matrix system, 595-596
chromatic Thats, not used, 593-594
sitar
construction of, 597
melodic, drone, and cikari strings, 597-599
moveable frets, 597-598
definition, Sachs, 597
letter-dot notation, based on Cheve
System, 598-599
Shankar's mastery of String II, Junius, 597
tuning of, example, 598
That
definition
Bhatkhande, 594
Kaufmann, 594
vs. modern mela of South India, 594
South India
Govinda, 565
mela raga
14 most popular mela ragas, 581
72 abstract raga-categories, 565
72 musical heptatonic scales, first formal implementation of, 565
krama (straight) or vakra (zigzag)
sequences, 565
two-directional krama (straight) sampurna (complete) principle, 579-582
alphanumeric prefixes, 580
Kanakangi-Ratnangi system, 580-581
critique of
Iyer, 582-584
K.V. Ramachandran, 584-585
N.S. Ramachandran, 580

Mela
Chakravakam, 580-581
Kharaharapriya, 574, 581
Mayamalavagaula, 574, 580-581
Natabhairavi, 576, 581
vs. Venkatamakhi's melakartas, 580
raga, 558, 564, 576, 585
Ramamatya, 565
12-tone practical scale, suddha mela vina tuning, 569-573
Antara Ga and Kakali Ni, elimination of, 572
14-tone theoretical scale, 566-567
7 suddha svaras, 566-568
7 vikrta svaras, 566-568
denominative raga, definition, 574
example of, Mela Sri-raga and Sri-raga, 574-576
janaka (parent) raga, abstract ragacategory, 574
janya (born, or derived) raga
definition, 574
laksana properties, absence of, 574, 576
musical raga, 565
Raga Mechabauli, 574-575
Raga Suddhabairavi, 574-575
Sri-raga, 575-576
modern Sadjagrama, Rao, 576
svara
anya (foreign note), 575-576
vakra (note out of order), 575
varjya (omitted note), 575
mela (unifier) ragas
abstract raga-category, 565
definition, 574
Mela Malavagaula, 574-575
Mela Sri-raga, 574-576
vs. Venkatamakhi's melakartas, 578
Venkatamakhi, 565
12-tone scale; new and modern svara names; ratios by Ramamatya, 576-577
72 Melakartas, of twelve-by-six matrix system, 565, 577-579, 581
19 melakartas, most popular in
Venkatamakhi's time, 577-579
36 vivadi (dissonant) melas, or chromatic melas, not used, 579, 582, 593-594, 607 n .119

Venkatamakhi's avoidance of, Iyer, 582-583
denominative raga, definition, 574
example of, Mela Gaula and Raga Gaula, 574
janya (born, or derived) raga
definition, 574
laksana properties, absence of, 576
musical raga, 564-565
Raga Gaula, 574-575
melakartas
14 most popular mela ragas, 581
abstract raga-categories, 565
definition, 577-579
Mela
Bhairavi, 576, 579, 581
Gaula, 579, 581
Malavagaula, 575, 579, 581
Sri-raga, 575, 579, 581
Indian scales. See Scales, Indian
Indian tetrachords. See also Scales, Indian
North Indian theory
Bhatkhande, 587
10 most popular Thats, 581, 596
Roy, 595
32 Thats, of eight-by-four matrix system, 595-596
chromatic Thats, not used, 593-594
South Indian theory
Govinda, 565
72 musical heptatonic scales, first formal implementation of, 565
Kanakangi-Ratnangi system, 580-581
Venkatamakhi, 565
72 Melakartas, of twelve-by-six matrix system, 565, 576-579, 581
36 vivadi melas, chromatic melas, not used, 579, 582, 593-594, 607n. 119
Indonesian scales. See Gamelan; Scales, Indonesian
Ingard, K. Uno, 149
Inharmonic strings
coefficient of inharmonicity
diameter effect on, 110, 118, 134-135, 808-809
frequency effect on, 110, 809
length effect on, 110, 809
steel stringing constants, logarithmic
plain string, 110
wound string, 115
of string
harpsichord, average values, 111
piano, average values, 110-111
piano vs. harpsichord, 126
plain, 110-111
wound, 114-115
tension effect on, 110-111

Inharmonic strings (Continued)
dispersion
definition, 104
and wave speed, effective, 104-107
inharmonicity
analysis of, stringing and restringing, 110-111, 118
cent calculation, strings and modes, 108-112
length, effective
and effective wavelength, 99, 101-102
stiffness parameter effect on, 101-102
vs. measured length, 101-102
mode
cents equation, 110
definition, 98
frequency equations, 99
shape, first four modes, 101-102
node, two different kinds, 101-102
piano tuning, 118, 135-137
stretched octaves
in bass, tuned flat, 112-114
in treble, tuned sharp, 111-112
restoring force
experiment, 104
tension and stiffness, composite force, 104-105
stiffness effect
experiment, 104
on mode
cents, 110
frequencies, 98
shape, 101-102
on wave speed, effective, 99, 104-106
on wavelength, effective, 99, 101-102
stiffness parameter
diameter effect on, 100
frequency effect on, 100
length effect on, 100, 105
steel stringing constant
plain string, 100
wound string, 114
of string
plain, 99-100, 111
wound, 113
tension effect on, 99-100, 111
tone quality. See also Beat rates
beat rate, 108, 135-136, 138, 140
of harmonics
coincident, 136ff.
flexible canon strings, 141-142
stiff piano strings, 140-141
intermediate, 137ff.
of keyboard instrument
Benade, 126
Fletcher, 135
mode number effect on, 140-142
perception of, dissonance effect, 108, 118, 135, 138-141
thick string $v s$. thin string, 104, 118, 135, 141-142
wave speed, effective, 106
and dispersion, 104-105
experiment, 104
mode number effect on, 105-106
stiffness parameter effect on, 106
Inharmonicity. See Inharmonic strings
Interference
definition, 48
in infinite tube, constructive and destructive, 200-203
in string
constructive, 47-48, 51-52
destructive, 48-49, 51-52
Interval ratios. See Flexible strings, ratios
Isothermal bulk modulus, liquids, 188
Iyer, T.L. Venkatarama, 582

J

Jairazbhoy, N.A., 541, 594, 596
Junius, Manfred M., 597
Just intonation
commensurable numbers of, 365-366
Galileo, 283
definitions, two different kinds, 365
Mersenne
harmonic-diatonic system, 404-405, 408, 436
harmonic series
as infinite series, not defined, 404-406, 420
as limited series
discovery of the first six harmonics, 404-408
influenced by
personal convictions, religious and moral, 407-408
Ptolemy's Tense Diatonic, 407
Zarlino's Senario, 407
harmonics
first 14 trumpet harmonics vs. length ratios of "old" trumpet marine, 410-412
"leaps" of natural trumpet vs. harmonics of monochord, four identical ratios, 406
"leaps" of trumpet marine vs. harmonics of monochord, five identical ratios, 406
length ratios of "new" trumpet marine vs. "old" trumpet marine, 410-415
with prime numbers greater than 5 , not acknowledged, 408, 412, 415
problems comprehending cause of; no knowledge of traveling waves, 404, 422-423
solved by D'Alembert, 423
three different terms for, 404
theory of consonance
based on Benedetti's observations, mechanical motions of strings, 415-416
contemplated ratios $v s$. endorsed ratios, 416-419
7-limit ratios
detailed analysis and conflicted rejection of, 417-420
qualified acceptance of ratios $8 / 7$ and 7/6, 420
origin of, Ptolemy's theory of graduated consonance, 321-326
Meyer
7-limit Tonality Diamond, original design, 448-452, 824
8 tonalities of, 449-451
13 -tone scale of, 449
minor tonality as inversion of major tonality, 452
moveable boundaries of, 451-452
origins of
in Rameau's dual-generator, 444-446, 448-449, 452
in triangular tables of Al-Jurjani, 401-402, 448
Salinas, 402-403, 448, 452
"table of spans," original description, 451
on 11-limit ratios, 448
plagiarized by Partch, 452-453
Partch
11-limit Diamond Marimba
36 bars of, frequency ratios, 452-455
minor tonality as inversion of major tonality, 454
Otonality and Utonality, theory of, 453-454
43-tone scale, 454-457
7 ratio pairs, to fill chromatic gaps of
11-limit Tonality Diamond, 454-455
29 ratios, 67% of 11 -limit Tonality
Diamond, 454-455
tuning lattice of, Wilson, 455-457
Meyer's 7-limit Tonality Diamond, three
changes to, 452-453, 824
Monophony, theory of, 453
Zarlino's philosophy of Unita (Unity), 429, 484n. 359
Rameau's dual-generator, 444-446, 454
Rameau
Demonstration du principe... (1750)
minor tonality
attempted to rationalized, 446-447
failed to rationalize, 447
as inversion of major tonality, Shirlaw, 448, 452
'relative' minor, origin of, 447-448
subharmonic series, Rameau's recantation of, 446
Generation harmonique (1737)
7-limit ratios, rejection of, 440
generator (dual-generator), function of, 444-446
harmonic progression of fractional string lengths, modern length ratios, 440-443
and Zarlino's ancient length ratios, same definition of major tonality, 441
harmonic series
consonances produced by nature, 440-441
major tonality, directly related to fundamental, 441
minor tonality, not directly related to fundamental, 441-446
subharmonic series, fallacy of, 441-446
Nouveau systeme... (1726)
harmonic generation, theory of, 436
harmonic series
hierarchy of consonances, 438
"major third," directly related to fundamental, 438
"minor third," not directly related to fundamental, 439-440
of single strings, 436-438
Mersenne and Sauveur, acknowledged, 436
Traite de l'harmonie (1722)
7-limit ratios, rejection of, 434
arithmetic progression of vibration numbers, frequency ratios, 428-434
vs. Zarlino's ancient length ratios, diametrically opposed descriptions of major and minor tonalities, 434-436
harmonic generation, theory of, 428-429, 434
harmonic progression of fractional string lengths (length ratios)
knowledge of, 433-434
not included, 431
of Stifel's string length integers (length ratios), 428-430, 432-434
least common multiple (LCM), of length numbers, 432-433
Zarlino's philosophy of Unita (Unity), 429-431 Senario, 434, 440
Ramis
5-limit ratios, four different kinds, 366-367
12-tone scale, 367-373
with a default schismatic fifth, 372-375

Index

Just intonation (Continued)
vs. Safi Al-Din's scale, with six schisma variants, 373-375
vs. Stevin's 12-TET, 375-377
Roberts
harmonic series
as infinite series
of discrete flageolet tones, 421
of natural trumpet tones, 421
as series of simultaneously sounding
harmonics, not defined, 421-422
harmonics, with prime numbers greater That
5, considered defective, 421
Salinas
7-limit ratios, rejection of, 403
harmonic division of ratio $6 / 1,403$
triangular table, 402-403
arithmetic division of ratio $6 / 1,402-403$
origin of, Al-Jurjani, 401-402
Zarlino's Senario, 401-403
Sauveur
'acoustique', science of sound, 422
discoveries on vibrating strings
'noeuds' (nodes) and 'ventres' (antinodes), 422
significance to other vibrating systems, 426
simultaneous subdivisions/mode
frequencies, 422-423
'sons harmoniques', consistent with intervals of harmonic divisions and harmonic series, 422, 427-428
standing wave of fifth harmonic, 424-426
harmonic series, as an infinite series
discovery of, 422-424
historic significance of, 426-427
no knowledge of traveling waves, 423
first thirty-two harmonics of strings and wind instruments, 423-424
scales
3 -, 5 -, and 7 -limit scales vs. $1 / 4$-Comma
Meantone and 12-TET scales, 376-377
prime number limit of, 282. See also Limit of 3; Limit of 5 ; Limit of 7
Stifel
division of "double-octave and a fifth,"
ratio $6 / 1$, into four arithmetic and four
harmonic means, 386-390
on the importance of both divisions, 401
plagiarized by Zarlino, 378, 389
Wallis
experiments, sympathetic resonance, 420-421
nodes
discovery of, 420-421
Sauveur's acknowledgment, 426
infinite number of, not defined, 421-422

Zarlino
major and minor tonalities, origins of, 377-378, 391-397, 399-401
arithmetic and harmonic divisions of "fifth," ratio $3 / 2,399-400$
Stifel's arithmetic and harmonic divisions of ratio $6 / 1,392-397$
numero Senario (Number Series 1-6), 377-378, 381-384, 390-397
rationalized consonance of "major sixth" and "minor sixth," 397-399
Western theory of consonance, modern, 400-401
philosophy of Unita (Unity), corporeal or spiritual manifestations, 429, 484n. 359
Just Keys
Plate 6, 850
score, "The Letter," from Ellis Island/Angel Island
description of, 811,824
tablature score, 812-817
traditional score, 818-823
tuning of, 808-811

K

Kanon. See Canons
Kasyapa, 562
Kaufmann, Walter, 490, 578, 594
Kepler, Johannes, 336, 418
Khan, Vilayat, 599
Kitharas
description
Maas and Snyder, 618-619
Sachs, 617-618
tension, only variable after stringing, 323
tuning limitations
four significant structural problems, 617-619
GPS not tunable, 619
of gut strings, 618
Krishan, Gopal, 599
Kudimiyamalai inscription, 561-564

L

Lachmann, Robert, 612
Lath, Mukund, 545, 550
Latin ratios
classification
multiple-superparticular, 284-285
multiple-superpartient, 284-286
superparticular (epimore), 284, 385
Al-Farabi, 661
Ibn Sina, 678-679
Mersenne, 417-418
Zarlino, 397
superpartient (epimere), 285, 385
Al-Farabi, 661
Zarlino, 398
interval
sesqui prefix, definition, 384
sesquialtera, 384-385
Mersenne, 417
Zarlino, 385-386, 392
sesquioctava, 384-385
sesquiquarta, 384-385
Mersenne, 417
Zarlino, 385-386, 399
sesquiquinta, 385
Mersenne, 417
Zarlino, 385-386, 398-399
sesquitertia, 384-385
Mersenne, 417
Zarlino, 398
Length ratios. See Flexible strings, ratios
Lieberman, Fredric, 486, 492, 496
Limit of 3
Al-Kindi, of original 12-tone "double-octave" ud tuning, 615
Chinese 12 -tone scale, spiral of eleven ascending "fifths," 487-488
compared to 12 -TET, 377
definition, 282
Philolaus, of original Diatonic Tetrachord, 299-301
Pythagorean theory, 288, 336, 367
Safi Al-Din, of original 17-tone ud tuning, 712
tunbur of Khurasan, 704
Western and Eastern music, two 12-tone scales, spirals of ascending and descending "fifths," 335
Limit of 5
Al-Farabi, on consonance of ratios $5 / 4$ and $6 / 5$, 326, 655-658
Bharata, of Sadjagrama and Madhyamagrama, 546
compared to 12-TET, 377
Gaffurio, rejection of, 367
Mersenne, of 12-tone lute scale, 358-359
Ptolemy
argumentative acceptance of, 288
original emmelic/melodic classification of, 325-326
of Tense Diatonic Scale, in Zarlino, 233
Pythagoreans, rejection of, 288-289
Ramis, of original 12-tone monochord scale, 372-373, 376
Zarlino, of numero Senario, 381-384, 397-399
Limit of 7
compared to 12-TET, 377
Forster, of Just Keys, 808-811
Huygens, consonance of ratios $7 / 5,10 / 7$, and $7 / 4$, 364-365

Mersenne
conflicted rejection of, 417-420
qualified acceptance of ratios $8 / 7$ and $7 / 6,420$
Meyer, of original Tonality Diamond, or "table of spans," 448-451
Ptolemy, of Soft Diatonic Scale, 334, 832
Rameau, rejection of, 440
Salinas, rejection of, 403
Limit of 11
Al-Farabi
of Jins 2 tetrachord, 653-654, 679-680
of middle finger of Zalzal fret on uds, 636-339, 643
Javanese slendro and pelog scales, close rational approximations, 510-511
Partch, of Diamond Marimba, 452-454
Ptolemy
of Even Diatonic Scale, 329, 679-680
of Tense Chromatic Scale, 331
Limit of 13
Forster
of Bass Marimba, 827
of Diamond Marimba, 824-825
of Glassdance, 831
Ibn Sina
of Diatonic Genus 4 and 7 tetrachords, 676, 679-680
influence on modern Persian dastgahs, 686-689, 692-696
of Zalzal frets on $u d, 671,674$
Limit of 17
Al-Farabi, of Persian middle finger fret on $u d \mathrm{~s}$, 636-639, 643, 674
Limit of 19
Eratosthenes, of Enharmonic and Chromatic Scales, 330-331
Forster
of Chrysalis, 796-797
of Harmonic/Melodic Canon, 798-799
Ibn Sina, of Chromatic Genus 11 tetrachord, 676
Ling Lun, 485
Litchfield, Malcolm, 308-309, 311, 317
Little Canon
construction of, 834-836
dimensions, 837-838
Plate 12, 856
tuning of, 837
Liu An, 500-501
Locana, 594
Logarithm. See Cents
Loops. See Flexible strings
Lutes. See also Tunbur; Ud
description of, Sachs, 597
etymology of, Farmer, 610
experiment with, Wallis, 421

Lutes (Continued)

inheritance of, from the Arabian Renaissance, 610-612
moveable frets of
lute and $u d$, 632, 669-670
sitar, 586
tunbur of Khurasan, 696, 701-704
of North India
sarangi, 600
sitar, 597-598
of Persia, tunbur of Khurasan, 696
of South India, vina, 543, 586
tuning
$1 / 4$-comma meantone $v s$. approximation of 12 -
TET, 340, 348-349, 354
of "semitone," ratio 18/17
Al-Farabi
12 equal "semitones" per "octave," 355
on two different $u d \mathrm{~s}$, 354-355, 639, 643
approximation of 12-TET
in concert music, Cardan, 355
fretting instructions
Galilei, 356
Mersenne, 356-359
origin of, Ptolemy, 354-355
Lyres
description
Maas and Snyder, 618-619
Sachs, 617-618
tension, only variable after stringing, 323
tuning
designs
of ancient Greece, 289
of Arabian simsimiyya, modern, 787n. 228
of Pythagoras, 293
of Terpander, 291-293
limitations
four structural problems, 617-619
GPS not tunable, 619
of gut strings, 618

M

Maas, Martha, 618
Major tonality. See also Minor tonality
of 7 -limit ratios
16 -tone scale, 420
Meyer's tonality diamond, 449-452
of 11-limit ratios, Partch
43-tone scale, 454-457
Diamond Marimba, 453
Otonality, 453-454
Al-Farabi's 'Diatonic Mode', 645
definition, harmonic division of "fifth," of ancient length ratios $3 / 2,396-397$ Zarlino, 377-378, 399-401

Rameau, harmonic progression of modern length ratios, 440-443
of dual-generator, 444-446
Marcus, Scott Lloyd, 749, 759-762, 767-771
Marimba bars. See Bars, rods, and tubes
Marimbas. See Bass Marimba; Diamond Marimba
Martopangrawit, Raden Lurah, 513, 517, 519-521
Mashaqah, Mikhail, 759
Mass, 5-6, 12, 17, 23. See also Mass per unit area;
Mass per unit length; Mica mass
air mass, of cavity resonator, 212-215, 221
definition, $1-2,8$
density, 1, 23
of air, 23,892
of the earth, 6
of fluid (liquid or gas), 4, 21
of solid, 4, 16
English Engineering System, 9, 12, 16
pounds-mass, 7 ff .
experiment, 7-8
inconsistent system, 9,16
lbm-to-mica conversion factor, 14, 880
English Gravitational System, 9-10
slug, 1, 9ff.
consistent system, 9-10
experiment, 10-11
slug-to-mica conversion factor, 880
English mass unit, undefined, 1, 13, 16
experiment, 7-10, 15
and frequency, $1,4,16,18-21$
of glass, snifter, 830-831
inertial property, 1-2, 4, 8
metric system
gram, 1
gram-to-mica conversion factor, 880
kilogram, 1
kg-to-mica conversion factor, 24,880
Newton, 1-2, 5-7
of spring-mass system, 183-184, 223n. 9
of string
plain, 2-3, 18-19, 338, 792
wound, 806
Mass per unit area
of plate, 123
of soundboard
harpsichord, 125-126
piano, 123-124
Mass per unit length
of bar, 158
of cylinder
hollow, 38
solid, 38
of stiffness parameter
plain string, 100
wound string, 113-114
of string
plain, 4, 18-19, 27-29
wound, 36-41
Mass per unit volume. See Mass, density; Mica mass, density
Matanga, 556, 561-562, 572
McPhee, Colin, 522-528, 530-533
Means, 86
arithmetic, and minor tonality, 90-91
arithmetic-geometric asymptote, 313-314
definition; arithmetic, harmonic, and geometric, 86
Archytas, 87-89
harmonic, and major tonality, 90
interpretations of, ancient length ratio vs. frequency ratio, 87-91, 93
Plato, description of, 91-92
explanation by
Nicomachus, 92
Plutarch, 93
Stifel, division of "double-octave and a fifth," ratio $6 / 1$, into four arithmetic and four harmonic means, 386-390, 401
Zarlino, arithmetic and harmonic divisions of "fifth," ratio $3 / 2,399-400$
incorporation of Stifel's arithmetic and harmonic divisions of ratio $6 / 1,390-397$
origins of major and minor tonalities, 377-378, 396-397, 399-401
Meantone temperaments
Aron's $1 / 4$-Comma Meantone Temperament, 342, 347
$1 / 4$ syntonic comma
calculation of, 344
cumulative reduction of four consecutive "fifths," 344-345
comparisons to 3 -limit, 5 -limit, 7 -limit, and 12-TET scales, 376-377
harmonic analysis of, twelve usable keys, 346-347, 349-350
Huygens
cent comparisons
comparable intervals of 31-TET, 363-364
"fifth" of 31-TET, 363
three septimal ratios; $7 / 6,7 / 5$, and $7 / 4,364$
key color of, unequal temperament with two different "semitones," 349
syntonic comma (comma of Didymus), definition, 343-344
tuning
lattice, 345
sequence, three steps, 344-346
vs. Werckmeister's No. III Well-Temperament, 352-353
"wolf fifth" and "wolf fourth" of, 346-347

Zarlino, 401
vs. $2 / 7$-comma meantone temperament, 343
based on irrational length ratios; geometric division of canon strings, 336-337
Euclid's method, mean proportional, 297-298
interpretation of
Chuquet, 399-341
Zarlino, 338-339
on keyboard instruments, 336, 340
vs. fretted lutes and viols, 348
meantone, definition, 342
geometric division of "major third," ratio 5/4, on canon string, 342-343
origin of, Ramis' advocacy of 5-limit "major third," ratio $5 / 4,340-342,375$
Mersenne, Marin, 338, 349, 356, 358-359, 377,
404-408, 410-420, 422-423, 428, 436, 438, 610, 642
Meyer, Max F., 448-453, 824
Mica mass, $14-16,18,23$
acronym, 14-15
consistent system, 14-15
definition, 14-15
user defined units, 23
density
of bar making materials, 885
of bronze, modified, 37
of copper, modified, 40
dimensional analysis, 23
of gases, 892
of liquids, 890
of solids, 888
of string making materials, 882
dimensional analysis, 17-20, 22-23
experiment, 15
mica-to-kg conversion factor, 24,880
mica-to-lbm conversion factor, 14,880
new mass unit, need for, $1,13,25 \mathrm{n} .19$
Minor tonality. See also Major tonality
of 7 -limit ratios
16-tone scale, 420
Mersenne, conflicted acceptance/rejection of, 418-420
Meyer's tonality diamond, 448-452
of 11-limit ratios, Partch
43-tone scale, 454-457
Diamond Marimba, 453
Utonality, 453-454
Al-Farabi's 'Persian Mode', 645
definition, arithmetic division of "fifth," of ancient length ratio $3 / 2,396-397$
Zarlino, 378, 399-401, 452
as inversion of major tonality
Meyer, 449-452
Rameau, 444-446, 452
Shirlaw, 448, 452

Minor tonality (Continued)
Rameau, arithmetic progression of ancient length ratios, 441-444
of dual-generator, 444-448
Mode shape, 98
Modes. See Scales
Modulus of elasticity. See Young's modulus of elasticity
Mohammed, 610
Monsour, Douglas, Dedication Page, 843
Morse, Philip K., 149
Musical slide rule. See Cents, logarithm

\mathbf{N}

Napier, John, 257, 340
Narada, 559-560, 564, 572
Narayana, 93, 587-592
Nederveen, Cornelis, J., 227-230, 233, 235-238, 244
Needham, Joseph, 487
Newton, Isaac, 1, 428
laws of motion
first, $2,5,8,11,158,186$
second, 5-7, 9, 15
Nicomachus of Gerasa, 82-85, 92-93, 284, 286,
293-294, 299, 319, 380, 610, 624-625
Nijenhuis, E. Wiersma-Te, 545, 556, 560
Nodes. See Bars, rods, and tubes; Flexible strings; Inharmonic strings; Just intonation, Sauveur;
Just intonation, Wallis; Resonators, tube
Numero Senario. See Just intonation, Zarlino

O

"Octave" equivalence. See Cents
Old Arabian School, 619-620, 636
Ornstein, Ruby Sue, 524, 530-531

P

Palisca, Claude V., 356, 415
Partch, Harry, v, 452-457, 824, 840
Period. See Flexible strings
Persian musical terms. See also Scales, Persian
dastan (fret), 628, 630-632
dastgah Mahur, pishdaramad (overture), 771-773
instruments
tar and setar (three strings), 597, 687-689
tunbur of Khurasan, 696-697, 701-704
ud al-farisi, ancient lute, 619
mode
5 hierarchical functions of tones: aqaz, shahed, ist, [finalis], and moteqayyer, 690-694, 772
vs. laksana, 691
12 Modern Dastgaha (sing. dastgah), Farhat, 692-696
dastgah, group of modes/dominant mode, 690ff.
gushe, individual mode, 690 ff .
vs. raga, 690
musical notation sign
koron, 636-640
sori, 636, 640
Persian scales. See Scales, Persian
Persian tetrachords, modern
all 12 Dastgaha on Ibn Sina's ud, 687-689, 692-696
Farhat
of 12 Dastgaha, 692-693
chromaticism, not used, 687
of Mahur, intervalic structure, 771-772
Philolaus, 91, 280, 288, 299-301, 304, 333, 617, 624-625, 648-649, 662, 681, 686, 758-759
Pianos
Cristofori, gravicembalo col piano e forte, 118, 130
design change ideas, 142
impedance ratio
air-to-soundboard, 129
soundboard-to-string, 125
inharmonicity
analysis of, 110-111
coefficients of, plain strings, 111
effect on
beat rates, uncontrollable, 105, 108, 135
timbre, 110-111, 118, 135
tuning, 111-112, 118
tuning possibilities, $105,108,118,135$, 808-809
limitations, structural and musical
soundboard, thickness, 133-134
string tension, total force, 134-135
tuning, inharmonicity, 134-135
soundboard
bending wave speed, 131-132
components
bridges, 124
liners, 124
ribs, 123-124
critical frequency, 130-133
dimensions, typical
surface area, 129
thickness, 123
impedance
data, Wogram, 122-124, 129-130, 132-133
plate vs. soundboard, 123-124
radiation, of air at soundboard, 129
sound radiation, 132-133
spruce
European (Picea abies), 886n. 8
Sitka (Picea sitchensis), 123, 885
stringing scale
1.88 : 1, need for, 34
$2: 1$, structural problems of, 33
strings
coefficients of inharmonicity, 109-111, 126
dimensions and tension, typical
bass, $\mathrm{G}_{2}, 40$
treble

$$
\mathrm{D}_{4}, 121
$$

G_{3} and $\mathrm{C}_{4} \ldots \mathrm{G}_{7}$ and $\mathrm{C}_{8}, 111$
energy transfer, to soundboard, 118-119, 125
impedance, $\mathrm{D}_{4}, 122$
length vs. diameter, changes in, 115
stiffness parameters, 111
tension equation
plain, 31
wound, 41
wound, need for, 27, 34
tuning process, general, 302
12-TET, 136
of "fifth," 136
of "fourth," 137
of "major third," 136-137, 139-140, 146n. 28
vs. harpsichords
coefficient of inharmonicity, average values, 126
critical frequency of soundboard, 132-134
impedance ratio
air-to-soundboard, 129-130
soundboard-to-string, 125-126
sound radiation, 133
soundboard thickness, string tension, and inharmonicity, 130
Plain strings
equations
diameter, 31
frequency, 27, 31
length, 31
mass per unit length, 28-29
tension, 31
four laws of, 31-32
length
and frequency, inverse proportionality, 32-33
piano stringing, structural problems, 33-34
piano stringing scale, treble strings, 34
tension
break strength
calculation, 35, 40, 134
definition, 35
considerations; structural, technical, and musical, 35
instrument limitations, 35
Plane sections. See Bars, rods, and tubes
Plato, 91-93, 288, 308, 610-611, 624-625, 759
Plutarch, 82, 85, 91-93
Poerbapangrawit, Raden Mas Kodrat, 513,
517-519, 521-522

Poisson's ratio
of hardwood plywood, 222
of Sitka spruce, 123
Powers, Harold S., 580-582, 586
Praetorius, Michael, 336, 349, 610
Pressure
adiabatic bulk modulus, 21-22
in cavity resonator, 212-214, 216-219, 226n.50
definition, 22
dimensional analysis, 22
driving
of acoustic (wave) impedance, complex, 197
specific, 127-128
of bar, 196, 214, 217-218
definition, 127
of soundboard, 128
of tube resonator, 198-199
English system
of air
at 1 standard atmosphere, 22
adiabatic bulk modulus, 22
psi, 13, 22
at flute embouchure and tone hole, 240-241
of gas, 188
wave
in air, 130-131, 182-184
of bar, 214, 217
in flute, 230, 234, 239, 247
of plane wave, 186-187
in tube resonator, 189-195, 198-199, 200-208
Young's modulus of elasticity, 13
Ptolemy, Claudius, vi, 78, 86, 90, 93, 280, 287-289,
295, 312-314, 316-334, 338, 354-355, 358-359,
399-401, 403-404, 407-408, 413, 415, 553, 564,
610, 624-625, 628, 636-637, 642, 646-647, 651,
657-659, 661, 664-665, 674, 677, 679-681, 707,
$712,759,792,832$
Pulse. See Waves
Pythagoras, vi, 44, 82-83, 280, 284, 288-289,
293-295
Pythagoreans, 288, 308, 318-319, 322-324, 336, 657

Q

Quadrivium, 630

R

Racy, Ali Jihad, 760-761
Radius of gyration. See Bars, rods, and tubes
Rai, I Wayan, 524-525, 529-530
Ramachandran
K.V., 584-585
N.S., 580

Ramamatya, 93, 565-580, 582, 584, 586-587, 599
Rameau, Jean-Philippe, 90-91, 428-436, 438-449,
451-452, 454
Ramis, Bartolomeo, 93, 340, 342, 358, 366-377, 401

Rao, T.V. Subba, 576
Rarefaction. See Compression and rarefaction
Ratio of specific heats
of adiabatic bulk modulus, 22
of gases, 892
of liquids, 890
Ratios. See also Ancient length ratios; Arabian ratios; Flexible strings, ratios; Greek ratios; Latin ratios
integer, definition, 71, 281
numbers That compose
commensurable vs. incommensurable, 365-366
Galileo, 283
composite
definition, 281
prime factorization, 281-282
irrational
cube root of 3, Archytas, 283
definition, 283
square root of real
Chuquet, 339-341
Euclid, 283, 297-298
Zarlino, 338-339
positive natural; odd, even, and prime, 281
prime
definition, 281
factorization, 281-282
limit, definition, of intervals and scales, 282. See also Limit of 3
rational
definition, 281
two types, 282-283
Ray, Satyajit, 600
Resonators
cavity
air mass, in neck, 212-213
actual, 215, 221
theoretical, 214
air spring
in cavity, 212-213, 215-216
at sidewalls, 217-219, 221
air spring-air mass system, two different
kinds, 212-213, 217-219
end correction
of duct opening, 214
of flange opening, 214
and frequency, inverse proportionality, 215
frequency, 215
equation, limitations of, 212
theoretical vs. actual, 217
Helmholtz, 212
making, size considerations, 218-221
neck, effective length of, 212-215
reason for, 212
sidewall stiffness, 221-222
tuning process
attack tone $v s$. decay tone, 222
at opening, 215-217, 222
at sidewalls, with tuning dowels, 219-221
tube
antinode (closed tube), 203
displacement (DA), 205, 207-208
pressure (PA), 205
antinode (infinite tube)
displacement (DA), 201-203
pressure (PA), 201-203
antinode (open tube), 203
displacement (DA), 204
pressure (PA), 204
closed, 203
airtight seal, making, 211
end correction, 207-209
and diameter, direct proportionality, 208
and frequency, inverse proportionality, 211
frequency
actual, 210
theoretical, 207
length
cut, 210
measured vs. effective, 207-208
theoretical, 207
closed-closed
frequency, theoretical and actual, 230
length, measured and effective, 230
impedance, acoustic wave, 197
bar-to-resonator relation, 198
of resonator, 196-197
of room, 199
of tube, 198
tube-to-room ratio, 199
node (closed tube), 203
displacement (DN), 205
pressure (PN), 205, 207-208
node (infinite tube)
displacement (DN), 201-203
pressure (PN), 201-203
node (open tube), 203
displacement (DN), 204
pressure (PN), 204
open, 203
end correction, 209
frequency
actual, 209
theoretical, 206
length
cut, 209
measured vs. effective, 229-230
theoretical, 206
pulse reflection
at closed end
compression, 190, 192
rarefaction, 190-191, 193
at open end
compression, 191, 194
rarefaction, 191, 195
reason for, 196
standing waves, pressure/displacement
closed, 203, 205, 208
closed-closed, 230
infinite, 201
open, 203-204, 230
Restoring force
of bar
clamped-free, 174-177
free-free, 147-148, 154-162
bending stiffness
of bar, 152, 154-155, 158-160
of plate, 123
of rod and tube, 158
of soundboard
harpsichord, 125
piano, 123, 130-132
of cavity resonator, 226 n .50
definition, 2
elastic property, 2-4, 21
of fluid, 4
of glass, snifter, 830-831
of plane wave, 186-187
of solid, 4
of spring-mass system, 226n. 50
of string. See also Downbearing force
flexible, 1-4, 18-19
stiff, 104-105, 107-108
Roberts, Francis, 421-422
Robinson, Kenneth, 503
Rods. See Bars, rods, and tubes
Roy, Hemendra Lal, 595-597

S

Sachs, Curt, 489, 556, 597, 617-618
Safi Al-Din, 93, 326, 366, 373-375, 379, 381, 384,
401-402, 610, 622, 626-627, 673, 696, 705,
707-733, 735, 737, 740-745, 747-749, 754-755,
758-759, 763-768, 771
Salinas, Francisco, 401-403, 448, 452
Sarngadeva, 548, 562, 566-567, 572, 576
Saunders, Lawrence, viii
Sauveur, Joseph, 390, 422-428, 436, 438
Scales, 86. See also Arabian musical terms;
Arabian ratios; Arabian tetrachords;
Equal temperaments; Greek ratios; Greek
tetrachords; Indian musical terms; Indian
tetrachords; Just intonation; Meantone
temperaments; Persian musical terms; Persian
tetrachords; Turkish musical terms; Turkish tetrachords; Well-temperaments

Arabian

8 tetrachords, origins in near-equal divisions of intervals; Ptolemy, Al-Farabi, and Ibn Sina, 677-681
24-TET, modern scale, 755-761
46 Modern Maqamat, 761-771, 786n. 209
9 fasail, for the construction of, 762
16-tone scale, for the playing of, 770-771
of Al-Farabi
3 standard modes, 7 -tone scales, 644-646
3 tetrachordal conjunct/disjunct systems; in the context of GPS, 662-666
8 Ajnas, tetrachords, 640-641, 646-655
10-fret ud tuning, theoretical, 632-639
15 tetrachords, 2 genera, 658-663
17-tone scale
original tunbur, 703-707, 735
tunbur of Khurasan, 696-697, 701-704
22-tone scale, $u d$ tuning, 640-643
of Al-Kindi, original 12-tone scale, $u d$ tuning, 611-617
of Al-Munajjim, 8 majari, 7 -tone scales, 621-625
of Brothers of Sincerity, 9-tone scale, $u d$ tuning, 620-622
of Ibn Sina
11 Melodic Modes, 681-686
16 tetrachords, 3 genera, 673-676
17-tone scale, $u d$ tuning, 666-673
of Safi Al-Din
17-tone scale
ascending spiral of "fourths," original construction, 731-733
First Ud Tuning, 707-713
monochord/ud tuning, 717-719
tunbur/ud tuning, 720-721
Second Ud Tuning, 714-717
19-tone scale, theoretical; ascending and descending spirals of "fifths," 710-713
84 Melodic Modes, 721-726, 728-729, 768
6 Awazat, 730-731
12 genera, for the construction of, 726
12 Shudud, 727-730, 737, 740-744, 767-768
Chinese
1-lu interval
two different kinds, 497-499
of two tiao (mode tuning) cycles, 496-499
5 -tone (pentatonic) scale
on ch'in
12 tiao (mode tunings) ascending cycle of six; descending
cycle of six, 496-499
interval sequences of, 497, 500

Scales (Continued)
open strings
post-Ming, new scale, 490-493
pre-Ming, old scale, 490-493
String III as chiao, dual identity of, 492
tuning sequence of, 492
stopped strings (hui fractions), pre-Ming, old scale, 492-496
cipher notation of, Cheve System, 490, 493, 496, 508
original, 487-488, 490-493
12-TET, discovery of, Chu Tsai-yu, 502-504
12-tone scale
formula of, Ssu-ma Ch'ien, 486
generation of, 486-487
lu, definition, 487
spirals of "fifths," That closely approximate equal temperaments, 500-502
Greek
Archytas, three means for the construction of tetrachords, 86-87
of Aristoxenus, 309-311
Catalog of Scales, seven theorists, 330-332
Dorian and Lydian modes, 292, 301, 333
of Euclid, 304
Greater Perfect System (GPS), 289-292, 301-304, 333
Lesser Perfect System (LPS), 289-291
of Philolaus, 300-301, 304
of Ptolemy, 328-329
of Pythagoras, 289, 293
seven harmoniai (modes), 290, 292
ecclesiastical names of, 290, 292
of Terpander, 289, 291-293
three genera, Archytas and Aristoxenus, 289-292
Indian
ancient
Bharata
Madhyamagrama (Ma-grama), 540-541, 546
and svarasadharana, 549-551
Sadjagrama (Sa-grama), 540-541, 546
Suddha Jatis, 554
Arsabhi and Naisadi vs. Ptolemy's
Tense Diatonic, 553
Vikrta Jatis, 555
Gandhari vs. original Chinese
pentatonic scale, 556
gramaragas and laksana
of Kudimiyamalai inscription, 563
of Matanga, 563
of Narada, 563
of Sarngadeva, 563
North India
12-tone scale, modern svaras of, 592

Bhatkhande, 10 most popular Thats, 581, 596
letter-dot notation, after cipher-dot notation of the Cheve System, 508, 535n.6, 598-599
Narayana and Ahobala, 12-tone vina tuning, 591
Roy, 32 Thats, of eight-by-four matrix system, 581, 595-596
sitar tuning and fret locations, 598
South India
14 most popular mela ragas, 581
Govinda
72 musical heptatonic scales, first formal implementation of, 565
Kanakangi-Ratnangi system, 580-581
Ramamatya
12-tone practical scale, suddha mela vina tuning, 573
14-tone theoretical scale, 567
Venkatamakhi
12-tone scale, 577
72 Melakartas, of twelve-by-six matrix system, 579, 581
Indonesian. See also Gamelan
Bali
gamelan Semar Pegulingan, 525-530
patutan, definition, 523, 537n. 43
pelog
7-tone scale (saih pitu), 523-530 5-tone scale (saih lima), derived, 524-530 pemero (two auxiliary tones), penyorog and pemanis, 525
cipher notation of, 523
intervals of, 523
patutan Selisir, 525-530
six-tone, Pliatan Village, 530-534
cipher notation of, 532
penyorog, 525, 531-534
Patutan Tembung, Selisir, Baro, Lebeng, 525-529
and Sunaren, 527-529
slendro, 5 -tone scale
cipher notation of, 522-523
intervals of, 523
saih gender wayang; shadow puppet theater only, 522-523
solmization, slendro and pelog, 525
Java
patet, definition, 512-513
pelog, 7 -tone scale
5 -, 7-, and 11-limit ratio analyses of, 511
cipher notation of, 510-511
definition, 510
intervals of, 510-512, 517-521

Patet Lima, Nem, and Barang, 517-521
gong tones and cadences, 517, 519-521, 537n. 29
slendro, 5 -tone scale
5-, 7-, and 11-limit ratio analyses of, 510
cipher and cipher-dot notation of, Cheve
System, 508-511, 535n. 6
definition, 509
intervals of, 509-517
Patet Nem, Sanga, and Manyura, 513-514, 516
gong tones and cadences, 513-516
solmization, slendro and pelog, 525
tumbuk (common tone) between slendro and pelog, 519-522
Persian
12 Modern Dastgaha, Farhat, 690-696
9 intervals of, 686-688
basic 17-tone scale of, 770-771
dastgah, definition, 690
on Ibn Sina's ud, 692-696
17-tone scale
modern cent averages of two tar and three setar tunings, 687-689
tunbur of Khurasan, 696-697, 701-704
Turkish
24-tone modern scale
6 modern musical symbols of, 735-736
53-TET, theoretical model, 736-737
comma-limma equivalents of, 736-736
vs. Al-Farabi's original tunbur tuning, 733-736
vs. Safi Al-Din's First Ud Tuning, 735
basic 18 -tone scale, 770-771
Signell
6 'Variant' Maqamat, 744-745
5 of 6 on Safi Al-Din's First Ud, 744-745
13 Basic Maqamat, 740-743
10 of 13 on Safi Al-Din's First Ud, 740-743
Western
7-tone modes, ecclesiastical names of, 290, 292
12-tone scale
five examples of, 376-377
origins of, Chinese and Arabian sources, 334
transformation from 3 -limit to 5 -limit scale, 418-419
of Anonymous, in Pro clavichordiis faciendis, first twelve-tone 5-limit scale, 473n. 175
of Aron, 342-347, 353, 364
of Halberstadt organ, Praetorius, 336
of Huygens, 362-365
of Kepler, 336
major scale, Zarlino's advocacy of Ptolemy's
Tense Diatonic, 319, 333, 832
of Mersenne's
harmonic-diatonic system, 403-405
lute, 356-359
"old" and "new " trumpet marines, 410-415
of Meyer, 449
minor scale, Ptolemy's Soft Diatonic, 334, 832
of Partch, 454-457
Pythagorean 'Apotome Scale' and 'Limma Scale', 336
of Ramis, 366-377
of Spechtshart, first twelve-tone 3-limit scale, 334-335
spirals of twelve "fifths," ascending and descending, for the construction of, 335-336
of Stevin, 358-362, 375-376
of Werckmeister, 349-353
Schisma. See Arabian ratios; Greek ratios, interval;
Just intonation, Ramis; Tunbur
Schlesinger, Kathleen, 227
Seeff, Norman, 857
Senario. See Just intonation, Zarlino
Shankar, Ravi, 597, 600
Sharma, P.L., 561
Shear force. See Bars, rods, and tubes, restoring forces
Shirlaw, Matthew, 428, 434, 448, 452
Signell, Karl L., 736, 738-739, 741-745
Simple Flutes, 833
Acrylic Flute
Flute 1
construction of, 246
dimensions, 241
tuning of, 239-241, 833
Flute 3, tuning of, 833
Amaranth Flute, Flute 2
dimensions, 243
tuning of, 245-246
Plate 11, 855
Simple harmonic motion (SHM)
definition, 50, 182
of particle motion
in air, 182-184
in cord/string, 50-51
in solid, liquid, gas, 186-187
of spring-mass system, 183-186
Sindoesawarno, Ki, 512
Sitar. See Indian musical terms, North India
Smith, Page, Dedication Page, 839
Snyder, Jane McIntosh, 618
Sound waves. See Waves, sound
Soundboards
instrument
Bass Canon, 800, 805
ch'in, top piece, 489
Chrysalis, 788-789
Harmonic/Melodic Canon, 790-793

Soundboards (Continued)
harp-vina, 543
harpsichord, 123, 125-126, 129, 132-133
Just Keys, 808-809
kithara and lyre, 617-618
Little Canon, 834-836
piano, 123, 125-126, 129, 132-133
qanun, ancient, 628-631
sitar, 597
trumpet marine, 408
$u d$, top plate, 619-620, 626
vina, 586
violin, top plate, 626
piano. See also Pianos, soundboard
bending wave, 122,128
speed, 119, 131
and bending wavelength, inverse proportionality, 131-132
and critical frequency, 132,134
and dispersion, 130-132
effect on acoustic radiation, 123-124, 131-133
experiment, 131
of plate, 131-132
dispersion
definition, 131
effect on radiation, 130, 132
energy transfer (coupling)
soundboard-to-air, 127-128
string-to-soundboard, 119, 121, 127-128
impedance, mechanical wave, $120-121,124$
data, Wogram, 122-124, 129-130, 132-133
experiment, thick soundboard
and thick piano string, 133-134
and thin canon string, 142
fluctuations, 122
of plate, 123
radiation, of air at soundboard, 124, 129-130
ratio
air-to-soundboard, 129-130, 134
soundboard-to-string, 125-126, 134-135, 142
reactance and resistance, 122-123
resonance and resonant frequency, 122-124, 132-133
radiation, 119
bending wave speed effect on, 131-132
critical frequency effect on, 132-133
data, Wogram, 124, 129-130
stringing effect on, 125, 130
thickness effect on, 130, 134
wood
European spruce (Picea abies), 886n. 8
Sitka spruce (Picea sitchensis), 885
T'ung wood (Paulownia imperialis), 489

Spechtshart, Hugo, 334
Speed of sound. See also Wave speed, longitudinal
in air, 23, 126-127, 131-132
at $68^{\circ} \mathrm{F}, 189$
at $86^{\circ} \mathrm{F}, 189$
per degree rise of, 189
as constant, 188, 208
inside played flute, 229
in rosewood, 21
in spruce vs. steel, 886 n .8
temperature effect on, gas, 188-189
Spring constant
acoustical, of cavity resonator, two different
kinds, 212-219, 221
definition, 183-185
mechanical, 183-185, 216, 218, 221-222
Spring-mass system
acoustical, of cavity resonator
definition, two different kinds, 212-213, 217-219, 221
elastic and inertial components, 212-213, 217-219, 221
excess pressure of, 226n. 50
frequency of, 215-217
restoring force of, 226n. 50
mechanical
definition, 183-185
elastic and inertial components, 183-185
frequency of, 185, 223n. 9
two springs in series and one mass, 218-219
restoring force of, 226n. 50
Ssu-ma Ch'ien, 93, 334, 486
Stapulensis, Jacobus Faber (Jacques Le Febvre), 396
Stevin, Simon, 354, 358-362, 375-376, 502-503, 542, 569, 749
Stifel, Michael, 276n.6, 378, 386-390, 392, 396-397, 401, 403, 427, 429, 432-433, 435
String Winder. See also Wound strings
construction of, basic components, 805-807
dimensions, 807
Plates 4 and 5, 848-849
Strings. See Flexible strings; Inharmonic strings;
Plain strings; Wound strings
Subharmonic series. See Flutes; Just Intonation, Rameau
Sumarsam, 512
Superposition. See Flexible strings
Surjodiningrat, Wasisto, 509-511, 516, 521-522

T

Temperaments. See Equal temperaments;
Meantone temperaments; Well-temperaments
Temperature
conversion factors, 189, 881
effect on
density vs. pressure, 188
frequency, 189
speed of sound in gas/air, 188-189, 225n. 26
per degree rise of, in air, 189
inside played flute, 229
Tensile strength, 32
and break strength calculation, 35
definition, 35
of spring steel, 35
of string materials, 882
gut strings, thick vs. thin, 883n. 1
high-carbon spring steel music wire, 884
temper classifications; copper, brass, bronze, and steel, 883
Tension. See Plain strings
Tenzer, Michael, 533
Terpander, 289, 291-293
Tetrachords. See Arabian tetrachords; Greek
tetrachords; Indian tetrachords; Persian
tetrachords; Turkish tetrachords
Theon of Smyrna, 284, 286, 318, 380
Tonality Diamond. See Diamond Marimba; Just
intonation, Meyer; Just intonation, Partch
Tone notation, ix
Toth, Andrew F., 524
Touma, Habib H., 760
Trumpet marines
description, 408
flageolet tones of, 408-409
Mersenne
harmonics of, 406
illustration of two, 411
as monochord, 410
length ratios of "old" and "new" trumpet marines, 410-415
Roberts, flageolet tones of, 421-422
Sauveur, rejection of, 422
Trumpets
harmonics of, first fourteen, 412
Mersenne, 404-405, 414-416
harmonics of, 406, 413
"leaps" of natural trumpet vs. harmonics of monochord, five identical ratios, 406-407
with prime numbers greater than 5 , not acknowledged, 408, 412, 415
Roberts, harmonics of, infinite series, 421
Sauveur, harmonics of, first thirty-two, 424
Tubes
instrument. See Bars, rods, and tubes
resonator. See Resonators, tube
Tunbur. See also Lutes
bridge and string holder (hitch pin), two separate components, 626-628, 696
of Khurasan, Al-Farabi
frets of, fixed and moveable, 701-704 strings and frets of, 696
schisma and comma variants of, 696-707
of Turkey, modern tuning and musical symbols of, 733-736
Turkish musical terms
6 hierarchical functions of tones: karar, tiz durak, yeden, guclu, asma karar, giris, 738
Turkish scales. See Scales, Turkish
Turkish tetrachords, modern
of Rast, 727, 746-747, 749
modal origins on Safi Al-Din First Ud, 726-728, 730-733, 744-748
Signell
6 basic tetrachords/pentachords, 738-739
6 'variant' (non-"basic") tetrachords/ pentachords, 738-739
Tyagaraja, 578, 583-584, 604n.73, 606n. 97

U

Ud. See also Lutes
bridge
dama, 628
faras, 626-628
hamila, 626-628, 631-632
hamila of canon functions as dastan of ud; vice versa, 628, 632, 670-672
musht, 626-628
construction and tuning of, earliest, 620-622, 775n. 27
fret (Pers. dastan), 628, 630-632
Al-Farabi, frets of $u d$ function as bridges of canon, 632
binsir (ring finger), 615, 617ff.
khinsir (little finger), 615, 620-622ff.
middle finger of Zalzal
Al-Farabi's uds, 634-640, 643-645, 650-653
Ibn Sina's ud, 667-673, 681-683
Safi Al-Din's First and Second Ud Tunings, 709-712, 714-716
mujannab (neighbor; also anterior or assistant), 615, 620, 634ff.
Persian (ancient) middle finger
Ibn Sina's ud, 667-672
Safi Al-Din's First Ud Tuning, 709-713
Persian middle finger
Al-Farabi's uds, 634-639, 642-645
Safi Al-Din's Second Ud Tuning, 714-717
sabbaba (index finger), 615, 617ff.
wusta (middle finger), 615, 617ff.
zaid (surplus), 709ff.
of Persia, ud al-farisi, precursor of classic
Arabian al-ud, 619, 775n. 27
Pythagorean diatonic scale, playable on all ancient $u d \mathrm{~s}, 755$
string
Bamm, String I, 612ff.

```
Ud (Continued)
    Hadd, String V
        Al-Farabi's ud, 641ff.
        Ibn Sina's ud, 669ff.
        Safi Al-Din uds, 708ff.
    Mathlath, String II, 612ff.
    Mathna, String III, 612ff.
    mutlaq (free; open string), 615, 617ff.
        tuning of, 612-613, 621-622, 633-634,
                641-642, 644-647, 667-668, 681-683,
                702,708-709
    Zir
        1st string, only on Ikhwan al-Safa's ud,621
        String IV, 633ff.
    'Zir 2', String V, only on Al-Kindi's ud, 612ff.
V
Vaziri, A.N., 640, 691, 772
Velocity
    definition, 4
    dimensional analysis, 4, 20, 22
    equations, 5, 7
    particle, 2-3
        of bar, 156-158
        of complex impedance
            mechanical (wave), 120-121
            specific acoustic (wave), 127
        of cord, 2-3, 50-51
        of plane wave, 186-187
        of solid and fluid, 119-120
        of sound wave, in air, 183-184
    phase
        of solid and fluid, 119-120
        of string, 131
    volume, complex acoustic (wave) impedance, 197
Venkatamakhi, 565-566, 574-584, 586, 594-596
    Muddu, 577
Vina
    ancient
        alapini vina, 543, 568-569
        Bharata,540
            vina (harp-vina), 543-544
                tuning experiment on, 541, 544
        kinnari vina, 569, 586
        zither-vina, development of, 568-569
    North India
        bin, modern stick-zither, 543
        Narayana and Ahobala, 587
            12-tone vina tuning, 591
            tuning instructions, 587, 590
        vicitra vina, 585, 599
    South India
        Ramamatya,565
            suddha mela vina, 569
                12-tone tuning, 570, 573
                    tuning instructions, 569-570
        vina, modern lute, 543,586
```


W

Wallis, John, 420-421, 426
Wave speed in bar, 149-150, 159-160
and bending wavelength, inversely proportionality, 149
and dispersion, 147-149
effect on inharmonic mode frequencies, 148-151
experiment, 149
tuning effect on, 160
in soundboard (infinite plate), 131-132
and bending wavelength, inverse proportionality, 131
and critical frequency, 131-132, 134
and dispersion, 131-132
driving pressure of, 128
effect on acoustic radiation, 124, 131-133
experiment, 131
phase velocity of, 119
stiffness effect on, 131-132
longitudinal
in fluid (liquid or gas), 3-4, 21, 188
in gases, 892
in liquids, 890
and mica mass unit; to simplify all calculations of, 21
in solid, 3-4, 21, 188, 888
transverse
in solid, 3-4
in string
flexible, 3-4, 60-61, 102-104
as constant, 60-61, 103-104
stiff, 99, 104-107
and dispersion, 104
as variable, 105-107
Wave train. See Flexible strings
Wavelength. See also Dispersion
bending
of bar, 149-150
experiment, 149
of soundboard, experiment, 131
definition, 54, 60
dimensional analysis, 54-55
of flute tube, half-wavelength
approximate, 229, 231ff.
exact, substitution tube, 229-232
and frequency
as function of, 80
inverse proportionality, 61-62
of longitudinal traveling wave, in air, 183-184
of string
flexible, 60-62, 71
as constant, 61-62
of transverse standing wave, $51-53,58$
stiff, 99, 101-102
of transverse standing wave, 102
as variable, 101-102, 116n. 6
of transverse traveling wave, wave train, 50-51, 54-57
of tube resonator
closed-closed, theoretical and actual, 230
closed (quarter-wavelength)
actual, 210
measured vs. effective, 207-209
theoretical, 207
open (half-wavelength)
actual, 209
measured vs. effective, 229-230
theoretical, 206
Waves
bending
in bar, 147-151
in soundboard, 119, 122, 124, 131ff.
definition, 44
pulse
longitudinal, in tube resonator
at closed end, compression and rarefaction, 192-193
at open end, compression and rarefaction, 194-195
transverse, in string
crest and trough, 44-45
collision of, 46-49
incident and reflected, 45-46
sound
beating phenomenon, 135-137
as longitudinal traveling wave, 21,130 ,
182-184, 186-188
speed of
in air, 23, 128, 131, 188, 203
and critical frequency, 131-133
in solid, liquid, gas, 119, 188
temperature effect on, in gases, 188-189
standing
displacement, in tube resonator
closed, 203, 205, 207-208
closed-closed, 230, 248n. 10
infinite, 200-203
open, 203-204
frequency of, 55, 58-59
longitudinal
definition, pressure/displacement, 200
in flute, 231, 234, 245
in tube resonator
close, 196, 205, 208
closed-closed, 230
infinite, 200-203
open, 204, 230
period of, 54-56
pressure, in tube resonator
closed, 203, 205-208
infinite, 200-203
open, 203-204, 206, 230
transverse
in bar (clamped-free), 175
in bar (free-free), 153
definition, 48, 51-53
in soundboard, 122
in string
discovery of, Sauveur, 424-426
and flageolet tones, 408-409
flexible, 51-55, 58-59, 182-183
mathematical model of, D'Alembert, 423
stiff, 101-102
traveling
frequency of, 55
longitudinal
in air, 182-184
definition, 183
in fluid, 119
in solid, liquid, or gas, 186-188
in tube resonator, 189-191, 196-197
closed, 203-207
infinite, 200-203
open, 203-206
period of, 54-56
transverse
definition, 50-51, 182-183
in solid, 119
in string, 2, 44-53, 58, 80
Weight. See also Weight density
definition, 6
equations, $6,8,16,18$
of mica, 14
of object, standard weight, 11-12
of rosewood test bar, 173
of slug, 11
as string tension, experiment
flexible, 18-19, 336-337
stiff, 108
as "weight ratio"
Nicomachus, description of, 82-86, 93, 294
Ptolemy, rejection of, 319
Weight density
of bar making materials, 885
definition, 16
English Engineering System, inconsistent
system, 16
of gases, 892
of liquids, 890
of rosewood test bar, 173
of solids, 888
of string making materials, 882
Weight per unit volume. See Weight density

Well-temperaments
based on irrational length ratios; geometric divisions of canon strings, 336-337
Euclid's method, mean proportional, 297-298 interpretation of

Chuquet, 339-341
Zarlino, 338-339
Werckmeister's No. III Well-Temperament, 349-350, 352
$1 / 4$ ditonic comma calculation of, 350
cumulative reduction of four non-
consecutive "fifths," 350-351
Bach's Well-Tempered Clavier tuning, Barnes, 349
ditonic comma (comma of Pythagoras), definition, 335, 349-350
harmonic analysis of, twenty-four usable keys, 351-353
"key color" of, unequal temperament with four different "semitones," 352
tuning
lattice, 350-351
sequence, 471n. 140
vs. Aron's $1 / 4$-Comma Meantone Temperament, 352-353
Werckmeister, Andreas, 350-353
Western scales. See Scales, Western
Whitman, Walt, v, 788, 794-799, 802-804, 840
Widdess, Richard, 558-559, 560-562
Wienpahl, Robert W., 397
Wilson, Erv, 455-457, 887n. 12
Winnington-Ingram, R.P., 308
Wogram, Klaus, 122-124, 129, 132
Wound strings
Bass Canon, 39-40, 800, 805
break strength of, 40
coefficient of inharmonicity, 114-115
experiment, 61-62
inharmonicity, difficulties analyzing, 113
length, 36
making with String Winder, 805-807
mass per unit length, 36-37
composite, 36-38
of custom string, three different materials, 39-40
of piano string, two different materials, 40-41
of cylinder
hollow, 38
solid, 38
of stiffness parameter, 113-114
mode frequency, 27-28
stiffness parameter, 34, 113-114
tension, 36, 41
of custom string, three different materials, 39-40
of piano string, two different materials, 40-41
tuning process, piano, 113
wrap wire, modified density
of bronze, 37
of copper, 40
Wright, Owen, 622-625

Y

Young
Robert W., 99
Thomas, 181n.38(B)
Young's modulus of elasticity
of bar making materials, 885
definition, 21
elastic property, 4
of hardwood plywood, 221-222
heat effect on, 164, 177
of solids, 888
of spruce, 123,885
grain direction factor, 123
of steel, Thomas Young, 181n.38(B)
of string making materials, 882
vibration test for, 180n.38(A)
rosewood bar, 172-173
water effect on, 172

Z

Zalzal, Mansur, 636, 716, 755
Al-Farabi's 'Mode of Zalzal', 645
Zarlino, Gioseffo, 93, 319, 333, 338-340, 342-343, 349, 377-379, 381-382, 384-387, 389-401, 403, 407-408, 428-429, 431-432, 434-436, 440-441, $446,452,553,832$
Ziryab, 614

