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Preface

This book is a very different type of mathematics textbook. Because of this, users new to it, and
its companion books that form the Discovering the Art of Mathematics library1, need context
for the book’s purpose and what it will ask of those that use it. This preface sets this context,
addressing first the Explorers (students), then both Explorers and Guides (teachers) and finishing
with important information for the Guides.

0.1 Notes to the Explorer

“Explorer?”

Yes, that’s you - an Explorer. And these notes are for you.

We could have addressed you as “reader,” but this is not a book intended to be read like a
traditional book. This book is really a guide. It is a map. It is a route of trail markers along a
path through part of the vast world of mathematics. This book provides you, our explorer, our
heroine or hero, with a unique opportunity to explore - to take a surprising, exciting, and beautiful
journey along a meandering path through a great mathematical continent.

“Surprising?” Yes, surprising. You will be surprised to be doing real mathematics. You will
not be following rules or algorithms, nor will you be parroting what you have been dutifully shown
in class or by the text. Unlike most mathematics textbooks, this book is not a transcribed lecture
followed by exercises that mimic examples laid out for you to ape. Rather, the majority of each
chapter is made up of Investigations. Each chapter has an introduction as well as brief surveys
and narratives as accompaniment, but the Investigations form the heart of this book. They are
landmarks for your expedition. In the form of a Socratic dialogue, the Investigations ask you to
explore. They ask you to discover mathematics. This is not a sightseeing tour, you will be the
active one here. You will see mathematics the only way it can be seen, with the eyes of the mind
- your mind. You are the mathematician on this voyage.

“Exciting?” Yes, exciting. Mathematics is captivating, curious, and intellectually compelling
if you are not forced to approach it in a mindless, stress-invoking and mechanical manner. In
this journey you will find the mathematical world to be quite different from the static barren
landscape most textbooks paint it to be. Mathematics is in the midst of a golden age - more
mathematics is being discovered now than at any time in its long history. Each year there are
50,000 mathematical papers and books that are reviewed for Mathematical Reviews! Fundamental
questions in mathematics - some hundreds of years old and others with $ 1 Million prizes - are

1All available freely online at http://artofmathematics.org/books.
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being solved. In the time period between when these words were written and when you read them
important new discoveries adjacent to the path laid out here have been made.

“Beautiful?” Yes, beautiful. Mathematics is beautiful. It is a shame, but most people finish
high school after 10 - 12 years of mathematics instruction and have no idea that mathematics
is beautiful. How can this happen? Well, they were busy learning arithmetical and quantitative
skills, statistical reasoning, and applications of mathematics. These are important, to be sure. But
there is more to mathematics than its usefulness and utility. There is its beauty. And the beauty of
mathematics is perhaps its most powerful, driving force. As the famous Henri Poincaré (French
mathematician; 1854 - 1912) said:

The mathematician does not study pure mathematics because it is useful; [s]he studies
it because [s]he delights in it and [s]he delights in it because it is beautiful.

Mathematics plays a dual role as a liberal art and as a science. As a powerful science, it shapes
our technological society and serves as an indispensable tool and as a language in many fields. But
it is not our purpose to explore these roles of mathematics here. This has been done in other fine,
accessible books. Instead, our purpose is to journey down a path that values mathematics for its
long tradition as a cornerstone of the liberal arts.

Mathematics was the organizing principle of the Pythagorean society (ca. 500 B.C.). It was a
central concern of the great Greek philosophers like Plato (Greek philosopher; 427 - 347 B.C.).
During the Dark Ages, classical knowledge was preserved in monasteries. The classical liberal
arts organized knowledge in two components: the quadrivium (arithmetic, music, geometry, and
astronomy) and the trivium (grammar, logic, and rhetoric) which were united by philosophy.
Notice the central role of mathematics in both components. During the Renaissance and the Sci-
entific Revolution the importance of mathematics as a science increased dramatically. Nonetheless,
it also remained a central component of the liberal arts during these periods. Indeed, mathematics
has never lost its place within the liberal arts except in contemporary classrooms and textbooks
where the focus of attention has shifted solely to its utilitarian aspects. If you are a student of the
liberal arts or if you want to study mathematics for its own sake, you should feel more at home
on this expedition than in other mathematics classes.

“Surprise, excitement, and beauty? Liberal arts? In a mathematics textbook?” Yes. And
more!

In your exploration here you will see that mathematics is a human endeavor with its own rich
history of struggle and accomplishment. You will see many of the other arts in non-trivial roles:
art, music, dance and literature. There is also philosophy and history. Students in the humanities
and social sciences, you should feel at home here too. There are places in mathematics for anyone
to explore, no matter their area of interest.

The great Betrand Russell (English mathematician and philosopher; 1872 - 1970) eloquently
observed:

Mathematics, rightly viewed, possesses not only truth, but supreme beauty - a beauty
cold and austere, like that of sculpture, without appeal to any part of our weaker
nature, without the gorgeous trappings of paintings or music, yet sublimely pure and
capable of a stern perfection such as only the greatest art can show.

We hope that your discoveries and explorations along this mathematical path will help you glimpse
some of this beauty. And we hope they will help you appreciate Russell’s claim:

2
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. . . The true spirit of delight, the exultation, the sense of being more than [hu]man,
which is the touchstone of the highest excellence, is to be found in mathematics as
surely as in poetry.

Finally, we hope that your discoveries and explorations enable you to make mathematics a part of
your lifelong educational journey. For, in Russell’s words once again:

. . . What is best in mathematics deserves not merely to be learned as a task but to be
assimilated as a part of daily thought, and brought again and again before the mind
with ever-renewed encouragement.

Bon voyage. May your journey be as fulfilling and enlightening as those that have beaconed
people to explore the many continents of mathematics throughout humankind’s history.

0.2 Navigating This Book

Intrepid Explorer, as you ready to begin your journey, it may be helpful for us to briefly describe
basic customs used throughout this book.

As noted in the Preface, the central focus of this book is the Investigations. They are the
sequences of problems that will help guide you on your active exploration of mathematics. In each
chapter the Investigations are numbered sequentially in bold. Your role will be to work on these
Investigation individually or cooperatively in groups, to consider them as part of homework assign-
ments, to consider solutions to selected Investigations that are modeled by your fellow explorers -
peers or your teacher - but always with you in an active role.

If you are stuck on an Investigation remember what Frederick Douglass (American slave,
abolitionist, and writer; 1818 - 1895) told us:

If there is no struggle, there is no progress.

Or what Shelia Tobias (American mathematics educator; 1935 - ) tells us:

There’s a difference between not knowing and not knowing yet.

Keep thinking about the problem at hand, or let it ruminate a bit in your subconscious, think about
it a different way, talk to peers, or ask your teacher for help. If you want you can temporarily
put it aside and move on to the next section of the chapter. The sections are often somewhat
independent.

Independent Investigations are so-called to point out that the task is more involved than
the typical Investigations. They may require more significant mathematical epiphanies, additional
research outside of class, or a significant writing component. They may also signify an opportunity
for class discussion or group reporting once work has reached a certain stage of completion.

The Connections sections are meant to provide illustrations of the important connections
between the mathematics you’re exploring and other fields - especially in the liberal arts. Whether
you complete a few of the Connections of your choice, all of the Connections in each section, or
are asked to find your own Connections is up to your teacher. We hope that these Connections
sections will help you see how rich mathematics’ connections are to the liberal arts, the fine arts,
culture, and the human experience.

3
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Further Investigations, when included, are meant to continue the Investigations of the math-
ematical territory but with trails to significantly higher ground. Often the level of sophistication
of these investigations will be higher. Additionally, our guidance will be more cursory - you are
bushwhacking on less well-traveled trails.

In mathematics, proof plays an essential role. Proof is the arbiter for establishing truth and
should be a central aspect of the sense-making at the heart of your exploration. Proof is reliant on
logical deductions from agreed upon definitions and axioms. However, different contexts suggest
different degrees of formality. In this book we use the following conventions regarding definitions:

• An Undefined Term is italicized the first time it is used. This signifies that the term is: a
standard technical term which will not be defined and may be new to the reader; a term
that will be defined a bit later; or an important non-technical term that may be new to the
reader, suggesting a dictionary consultation may be helpful.

• An Informal Definition is italicized and bold- faced the first time it is used. This signifies
that an implicit, non-technical, and/or intuitive definition should be clear from context.
Often this means that a formal definition at this point would take the discussion too far
afield or be overly pedantic.

• A Formal Definition is bolded the first time it is used. This is a formal definition that is
suitably precise for logical, rigorous proofs to be developed from the definition.

In each chapter the first time a Biographical Name appears it is bolded and basic biographical
information is included parenthetically to provide historical, cultural, and human connections.

In mapping out trails for your explorations of this fine mathematical continent we have tried
to uphold the adage of George Bernard Shaw (Irish playwright and essayist; 1856 - 1950):

I am not a teacher: only a fellow-traveler of whom you asked the way. I pointed ahead
– ahead of myself as well as you.

We wish you wonderful explorations. May you make great discoveries, well beyond those we could
imagine.

0.3 Directions for the Guides

Faithful Guide, you have already discovered great surprise, beauty and excitement in mathematics.
This is why you are here. You are embarking on a wonderful journey with many explorers looking
to you for bearings. You’re being asked to lead, but in a way that seems new to many.

We believe telling is not teaching. Please don’t tell them. Answer their questions with ques-
tions. They may protest, thinking that listening is learning. But we believe it is not.

This textbook is very different from typical mathematics textbooks in terms of structure (only
questions, no explanations) and also of expectations it places on the students. They will likely
protest, ”We’re supposed to figure this out? But you haven’t explained anything yet!” It is
important to communicate this shift in expectations to the students and explain some of the
reasons. That’s why we have written the earlier sections of this preface, which can help do the
explaining for us (and for you).

4
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You need support as well. A shift in pedagogy to a more inquiry-based approach may be
subtle for some, but for many it is a great leap. Understanding this we have assembled an online
resource to support teachers in the creation and nurturing of successful inquiry-based mathematics
classrooms. Available online at http://artofmathematics.org/classroom it contains a wealth
of information - in many different forms including text, data, videos, sample student work - on
many critical topics:

• Why inquiry-based learning?

• How to get started using our books. . .

• A culture of curiosity

• Learning contracts

• Grouping students

• Choosing materials - Mixing It Up

• Asking good questions

• Creating inquiry-based activities

• Making mistakes

• Cool things

• Proof as sense-making

• Homework stories

• Exams

• Posters

• Assessment: Student Solution Sets

• Evaluating the effectiveness of inquiry-
based learning

• . . . and much more . . .

We wrote the books that make up the Discovering the Art of Mathematics library because they
have helped us have the most extraordinary experiences exploring mathematics with students who
thought they hated mathematics and had been disenfranchised from the mathematical experience
by their past experiences. We are encouraged that others have had similar experiences with these
materials. We love to hear success stories and are also interested in hearing about things that
might need to be changed or did not work so well. Please feel free to share your stories and
suggestions with us: http://artofmathematics.org/contact.

0.3.1 Chapter Dependencies

Guides are encouraged to pick and choose topics freely, from this book and others in the Discovering
the Art of Mathematics series, depending on their interests and those of their students. The chapter
dependencies in this book are as follows:

5

http://artofmathematics.org/classroom
http://artofmathematics.org/contact


DRAFT c© 2015 Julian Fleron, Philip Hotchkiss, Volker Ecke, Christine von Renesse

6



Chapter 1

A little Introduction

1.1 Mathematics, Music and Art

Mathematics is music for the mind; music is mathematics for the soul.

Anonymous

This is a not a regular textbook. This is a book which makes you think and write and discuss.
I hope you read the “Notes to the explorer” preface.

Before we start diving into a topic, we want to think about the connection of mathematics and
the arts.

1. What is mathematics? Find a good definition.

2. What is music? Find a good definition.

3. What is art? Do you think mathematics is an art? Why or why not?

4. Classroom Discussion: Compare your definitions with your classmates and your professor
and agree on definitions for mathematics, music, dance and art.

Mathematics is everywhere in art, in particular in music even if the artists are not aware of
it. This book will show many different areas of music that are built on concepts of mathematics.
Discovering the mathematics will deepen your appreciation – not only of the mathematics but also
of the artform itself.

5. How often do you listen to music?

6. Why do you think music is so important for you? For humans in general?

7. What is your favorite piece of music? Why?

8. Analyze your piece of music: can you find any structure? Consider rhythm, melody, general
format, chords, lyrics, loudness, ...

9. Classroom Discussion: Share the structure that you found in your piece with your class-
mates. Are there any common structures? Any common themes? Do you see any mathe-
matics yet?

7
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1.2 Some Standard Music Notation

You can skip this section for the first read, just know that it is there in case you need it.
On the staff, see Figure 1.1, each line and each space between lines corresponds to one of the

note names:
C,D,E, F,G,A,B,C, · · · .

The top part of the staff is for the right hand of the pianist while the bottom staff is for the left

Figure 1.1: Standard Music Notation

hand. The notation for both hands is different, since the keys you play with your left hand have
lower sounds than the ones you play with your right hand! Now the notes on the staff in Figure 1.1
are only for the white keys of the piano. Here is how you notate the black keys: If you want a
note for the key to the top right of F , which is called F sharp you write a ] in front of the note.
See Figure 1.2. If you want a note for the key to the top left of, say E, which is called E flat ,
you write a [ in front of the note. The ] and the [ are called accidentals. In this way many keys

Figure 1.2: Accidentals

have two names, e.g. F] = G[. You can find details about the history and details of tuning in
Chapter 4.

8



Chapter 2

Exploration of Rhythms and
Pascal’s Triangle

A mathematician, like a painter or a poet, is a maker of patterns. If his patterns are more
permanent than theirs, it is because they are made of ideas. His patterns, like the painter’s
or the poet’s must be beautiful; the ideas, like the colors or the words, must fit together in a
harmonious way.

G.H. Hardy (English Mathematician; 1877 - 1947)

2.1 Counting Rhythms

In this section we will explore rhythms from a mathematical point of view. A rhythm can provide
structure to a musical piece but it is also possible that a piece of music consist only of rhythms
played, for instance, by drums. There are many interesting questions we could ask about the
structure of rhythms and how to combine several of them, but this section will focus on “how
many rhythms there are”. To begin our inquiry we need to be able to notate rhythms and develop
a common language.

1. Listen to the rhythm Son at https://www.youtube.com/watch?v=SnjqxgtLJlA and https:

//www.youtube.com/watch?v=UG9NacR29zM. Can you notate the rhythm somehow? You
can use the standard musical notation, but find at least one other way of representing the
rhythm. Describe the rhythm to someone else on paper such that they would be able to
reproduce the rhythm after reading your description.

2. Classroom Discussion: Compare the different ways of notations for rhythms. Which one
seems the best to you? Why?

3. Classroom Discussion: Discuss how finding a notation for a rhythm is connected with
mathematics? Which aspects of mathematics did you learn about?

The rhythm you just heard is called Son or 3/2 clave. It is the basic rhythm of salsa music
and as such known everywhere in the world. We will use a binary notation for rhythms, where we

9

https://www.youtube.com/watch?v=SnjqxgtLJlA
https://www.youtube.com/watch?v=UG9NacR29zM
https://www.youtube.com/watch?v=UG9NacR29zM


DRAFT c© 2015 Julian Fleron, Philip Hotchkiss, Volker Ecke, Christine von Renesse

write a 1 for a note (when we play a note or clap) and a 0 for rest. In this notation the first part
of the Son rhythm looks like 10010010. Why is this rhythm so special? According to Godfried
Toussaint [13], Professor at McGill University, Montreal, “it is one of the most famous rhythms
in the world. In Cuba it goes by the name tresillo and in the USA it is often called Habanera.
It is also found widely in West African traditional music.” Toussaint has done a lot of work on
comparing rhythms and looking at them from a geometric point of view.

4. Independent Investigation: The first part of Son consists of 3 notes and 5 rests on
a total of 8 counts. We first would like to know how many possible rhythms there are
given 3 notes (and 5 rests) on 8 counts. This will be our first mathematical exploration.
Work in groups and take your time. Document your work, reason why attempts worked
or didn’t work. Consider for instance the patterns if you have 1,2 or 3 notes on 3 counts,
and 1,2,3 or 4 notes on 4 counts. Have fun!

5. Classroom Discussion: Compare your results from the independent investigation: how
many rhythms are possible given 8 counts and 5 notes?

There are many different ways to approach this problem and you found at least one of them.
The next questions will help you to find other strategies and connect the different approaches with
each other.

6. Given 2 counts, how many ways are there to have a rhythm with 1 note?

7. Given 2 counts, how many ways are there to have a rhythm with 2 notes?

8. Given 3 counts, how many ways are there to have a rhythm with 1 note?

9. Given 3 counts, how many ways are there to have a rhythm with 2 notes?

10. Given 3 counts, how many ways are there to have a rhythm with 3 notes?

11. Given 4 counts, how many ways are there to have a rhythm with 1 note?

12. Given 4 counts, how many ways are there to have a rhythm with 2 notes?

13. Given 4 counts, how many ways are there to have a rhythm with 3 notes?

14. Given 4 counts, how many ways are there to have a rhythm with 4 notes?

15. Can you see a pattern in the above results? Try playing with the numbers. Fill in the next
ones using the pattern you found and then check them.

16. Given 5 counts, how many ways are there to have a rhythm with 1 note?

17. Given 5 counts, how many ways are there to have a rhythm 2 notess?

18. Given 5 counts, how many ways are there to have a rhythm 3 notes?

19. Given 5 counts, how many ways are there to have a rhythm 4 notes?

10
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20. Given 5 counts, how many ways are there to have a rhythm 5 notes?

21. Independent Investigation: Take your notebook and write the above numbers in a
triangle (pyramid), the rows corresponding to the number of counts and the “columns”
corresponding to the number of notes. Can you see a pattern now? Describe the sym-
metries you observe. Think about what happens if you have no notes at all – how many
rhythms are there?

2.2 Pascal’s Triangle

The pattern that emerges is called Pascal’s triangle . It becomes a full symmetric triangle when
you add on the left side of the triangle the following numbers:

22. Given 2 counts, how many ways are there to have a rhythm with 0 notes?

23. Given 3 counts, how many ways are there to have a rhythm with 0 notes?

24. Given 4 counts, how many ways are there to have a rhythm with 0 notes?

25. Given 5 counts, how many ways are there to have a rhythm with 0 notes?

Row Number = Number of Counts

Column Number = Number of Notes

Numbers start at zero.

Figure 2.1: Number of Ways to have Rhythms.

11
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Now, given one row of the triangle, how do you find the next row without having to count out
the number of rhythms? You can fill your numbers into the empty triangle in Figure 2.1 to help
you find the pattern.

26. Classroom Discussion: What are the patterns you find in Pascal’s triangle? How can you
use patterns to find the next rows without having to count rhythms?

The triangle was studied by Blaise Pascal (French Mathematician; 1623 - 1662), although
it had been described centuries earlier by the Yanghui (Chinese Mathematician; 1238 - 1298)
and Omar Khayyam (Persian Astronomer and Poet; 1048 - 1131). It is therefore known as the
Yanghui triangle in China. See Figure 2.2 for pictures of Pascal, Yanghui and Khayam.

Figure 2.2:

Back to our question: how many rhythms there are for 8 counts and 3 notes. If you ask
mathematicians, they might suggest to compute(

8

3

)
=

8!

3!5!
1 (2.1)

Here the exclamation mark stands for factorial, which you compute in the following way:
8! = 1 · 2 · 3 · 4 · · · 8.

Wow, that looks really complicated! Lets try to understand this for our example. If we have
8 counts and 3 notes then we have to compute

(
8
3

)
= 8!

3!5! = 6·7·8
3·2·1 = 56. So the mathematician

claims there are 56 different rhythms. Does 56 agree with your answer from before? The following
investigations will help us understand why this computation works.

1Mathematicians write for entry (k + 1) in row (n + 1) in Pascal’s triangle:
(n
k

)
and say n choose k. They have

a general equation to compute the entries: (n
k

)
=

n!

k!(n− k)!
.

Mathematicians don’t usually think about notes and rhythms, for them n choose k computes the number of
possibilities to choose sets of k objects out of n objects. But we can think of choosing k positions for notes out of
8 available counts.

12
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Since we have 8 counts, we have 8 places where we can place the 3 notes. If a problem seems
too hard, mathematicians like to make it easier. For our example, we will ignore for a moment
that the second note should be played after the first note.

27. In how many places can you put the first note?

28. After choosing your first note, how many places are left for the second note?

29. After choosing the second note, how many places are left for the third note?

30. How can you use these numbers to find the number of possibilities to place all 3 notes?

We have to be careful, because if you count this way your first note might actually sound after
the second note, and that would not be appropriate. From all the ways we can order the 3 notes
we only want to consider one.

31. In how many ways can you order 3 notes? Imagine you had 3 flower pots and wanted to
know in how many different ways you could arrange them in a line...

32. Explain how the expression 6·7·8
3·2·1 relates to Investigation 31.

33. Classroom Discussion: What is a proof in mathematics? What is a conjecture? Can we
use examples to be sure that a conjecture is true?

34. Prove that we can use the factorial equation (2.1) to compute the number of possible rhythms.

There are so many methods to solve our problem of finding the number of possible rhythms
with 3 notes in 8 counts. Maybe you did it in one of the above ways? Lets try another method:

If you choose the first note on the first count, here is the list of all the possibilities to choose
the other two notes:
1 2 3 1 3 4 1 4 5 1 5 6 1 6 7 1 7 8
1 2 4 1 3 5 1 4 6 1 5 7 1 6 8
1 2 5 1 3 6 1 4 7 1 5 8
1 2 6 1 3 7 1 4 8
1 2 7 1 3 8
1 2 8

There are 6 + 5 + 4 + 3 + 2 + 1 = 21 possibilities for this block of numbers.

35. Create a list as above for starting the first note on the second count. How many possibilities
are there?

36. Continue creating lists and counting the possibilities.

37. For every block of numbers you found a sum (of the number of possibilities, e.g. the 21
above), can you find all these numbers in Pascals triangle? Circle them in your triangle.
Now find our result 56 in the triangle and circle it, too. Describe what you see.

38. The pattern you see is also called the hockey stick pattern. Can you see why? Does the same
pattern work for other numbers in the triangle (i.e. when you move the hockey stick)?

13
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2.3 Further Investigation

F1. There are many more exciting patterns in Pascals triangle! Find at least three.

One of the patterns you probably found is the addition pattern: when adding two adjacent
numbers the result will be right beneath the two numbers that you added. Mathematicians love
finding patterns but they also wonder about why the patterns occur and how you can be sure that
they will continue to happen. Our goal now is to understand why the addition pattern in Pascal’s
triangle occurs and to make sure that it will still happen for many counts.

F2. In Figure 2.3, fill all possible rhythms in the respective boxes.

4 counts

2 notes

2 notes1 note

5 counts

Figure 2.3: Part of Pascal’s Triangle.

F3. Now look at the rhythms you filled into Figure 2.3, can you see any structure that suggests
how the rhythms in the upper boxes are connected to the rhythms in the box below? Explain
the structure you found.

F4. Go to another place in Pascal’s triangle and choose three similarly positioned boxes. Fill
them with rhythms and see if your structure applies here as well.

F5. Does your structure apply to the top of the triangle?

F6. Explain in your own words why the addition pattern in Pascal’s triangle occurs, using the
structure you found. Be specific in your arguments.

F7. Explain why the hockey stick pattern in Pascal’s triangle is always true.

F8. Read the paper “The Rascal Triangle” (http://www.maa.org/sites/default/files/
pdf/pubs/cmj393-395.pdf) written by middle school students Alif Anggoro, Eddy Liu and
Angus Tulloch. Does this influence or change your thinking about mathematics research?
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2.4 Interlude: Clapping Music

You explored one mathematical aspect of rhythms in the last section, which was mostly based
on counting. Mathematicians call this kind of mathematics Combinatorics. Now we want to
see some musical application of rhythm structures by playing a piece composed by Steve Reich
(American Composer; 1938 - ).

Practice the following rhythm: 111011010110. One person keeps clapping this rhythm. We
want to cycle through the rhythm by moving one count from the beginning to the end. For instance
for the first time, we move the first note to the end and start with the second note 110110101101.
A second person claps the cycled rhythm starting at the same count as the first player starts his or
her rhythm. After listening to this combination the second person moves yet one more count over
and is now clapping 101101011011. Keep going until both players clap the same rhythm again.
You can listen to the piece at https://www.youtube.com/watch?v=lzkOFJMI5i8.

39. How do you like the resulting piece of music? What is appealing to you? What do you
dislike?

Steve Reich was born in New York, on October 3, 1936, and is currently living in Manhattan.
After studying philosophy he turned to music and explored many different techniques of compo-
sition. His style is labeled “minimalist music”. He does for instance play the same piece on two
different instruments but using different tempo (this is called phasing). He also used tape loops,
recording rhythms on tape and then playing them back over and over again in either the same
or different tempo. Recently the New York Times called him ”our greatest living composer”. In
April 2009 Steve Reich was awarded the Pulitzer prize in Music for his composition ’Double Sextet’.

Figure 2.4: Evelyn Glennie (Scottish Percussionist; 1965 - ) opens her recital at the Ormond
Beach Performing Arts Center playing Clapping Music by Steven Reich on the wooden blocks.
Glennie is the worlds first full-time solo percussionist. She is profoundly deaf.

Scottish percussionist Evelyn Glennie opens her recital at the Ormond Beach Performing Arts
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Center playing Clapping Music by Steven Reich on the wooden blocks. Glennie is the worlds first
full-time solo percussionist. She is profoundly deaf.

40. How many times does the rhythm 111011010110 need to be shifted in order to sound like
the first rhythm again? Find a way to explain your answer that doesn’t require listening to
the piece.

41. Draw a picture or diagram to support your reasoning in investigation 40.

42. Find a rhythm on 8 counts that will sound the same after being shifted exactly 4 times. It
should not sound the same after any other shift less than 4. Explain your strategy.

43. Can you find several rhythms for investigation 42? Explain why or why not.

44. Find a rhythm on 8 counts that will sound the same after being shifted exactly 5 times. It
should not sound the same after any other shift less than 5. Explain your strategy.

45. Can you find several rhythms for investigation 44? Explain why or why not.

46. Can you find a general answer for investigations 42 and 44? The question is: Are there any
rhythms on n counts that sound the same after being shifted exactly m times? It should not
sound the same after any other shift less than m times.

47. It turns out that we can ask the question in a slightly different way, maybe you did already
come across this problem. The question is now: Are there any rhythms on n counts that
sound the same after being shifted m times? It can also sound the same at other shifts less
than m times.

48. Compose your own piece of music/rhythm using the above ideas. You can use the soft-
ware ABC drums at http://www.sju.edu/~rhall/Multi/drums.html to help you play and
record your composition.

2.5 What is mathematics?

Now that you have done some investigations, let’s think about what mathematics is. How do these
investigations compare to the mathematics you have seen in high school? Is it harder oder easier?
Do you like it better or not?

49. Read Lockhart’s Lament http://www.maa.org/devlin/LockhartsLament.pdf and write a
response to it addressing the above questions.

50. Do you think mathematics is an art? Why or why not?

51. Classroom Discussion: Share your thoughts about Lockhart’s lament with your class-
mates. Did the reading change your perception of this mathematics class?
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2.6 Further Investigations

There is much more that can be done with clapping music, this was just a little taste of it. The
following investigation gives you motivations and ideas to go further into the topic and do your
own projects.

F9. Given 12 counts how many rhythms are there that lead to interesting pieces of clapping
music, similar to Reich’s piece? You can read the paper “Clapping Music - a Combinatorial
Problem” by Joel Haack, published in the College Mathematics Journal (available online).
This is a bigger mathematical challenge, you will have to learn about groups, permutations,
and some combinatorics to understand the paper!

Evelyn Glannie has a wonderful Ted talk you should listen too: http://www.ted.com/talks/
evelyn_glennie_shows_how_to_listen.html. The following investigations can help you focus
on different aspects of the talk, but there is much more to take away from it.

F10. How is Evelyn’s idea of truly listening to someone (and not being judgmental) relevant in
your class? In your life?

F11. Is there a “right” and “wrong” in music? in mathematics?

F12. Do you need to be creative in music? in mathematics?

F13. Evelyn says that you need to experiment with a drum before you can start to make music
with it. How is this related to doing mathematics?

F14. In music you can practice playing an instrument or you can interpret music in your own
way. Can you find equivalent aspect in doing mathematics?

F15. Evelyn says that she wonders “why she is practicing music”. She “needs to have a reason”.
Do you feel like this when you are doing mathematics?
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Chapter 3

Understanding
Rhythm-Palindromes

Music is the pleasure the human mind experiences from counting without being aware that it
is counting.

Gottfried Leibniz (German Mathematician and Philosopher; 1646 - 1716)

3.1 Palindromes

In Chapter 2 we looked at the combinatorics of rhythms in general. In this chapter we want to look
more closely at some especially beautiful rhythms: palindromes. But before we start we need to
talk about how to notate rhythms. There are many different ways we can do this; for this chapter
we want to focus on two of them.

1. Binary notation, for instance 10110110, with 1s as notes and 0s as rests.

2. Geometric notation, where we notate the counts around a circle and mark the notes as dots.
If you connect the dots you can use the geometric shape, called a polygon , to visualize the
rhythm. See Figure 3.1.

We want to find and count rhythms that are palindromes. You may be familiar with the notion
of a palindrome from words like ANNA which read the same forwards and backwards.

Many composer have used palindromes in their compositions. In Figure 3.3 you can see an ex-
cerpt from Alban Berg’s opera “Lulu” that shows a rythmical palindrome. Haydn’s 47th synphony
is sometimes called “The Palindrome” because of his use of melodic and rhythmical palindromes,
see Figure 3.2 (Second part of the Minuet).

Godfried Toussaint [13] describes a palindrome as a rhythm that sounds the same if you play
it forward or backward in the circle notation. Figure 3.1 shows a palindrome in that sense: If you
play to the right, starting at the top, you get 10110110, if you play to the left you get 10110110.
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Figure 3.1: 10110110 in geometric notation. There are 8 Counts and 5 Notes.

Figure 3.2: Example of a long Palindrome in Haydn’s Music

1. Find palindromes in binary notation, like 101101101 and compare them with Toussaint’s
palindromes. Would Toussaint consider your binary palindromes as palindromes?

Let’s call Toussaint’s palindromes geometric palindromes and the ones in binary notation
musical palindromes. We want to understand how different these two really are!

2. Independent Investigation: To compare the two palindrome definitions we want to
record the number of geometric palindromes and the number of musical palindromes in
two triangles, similar to Pascal’s triangle. You can use Figure 3.4 and Figure 3.5. This
will take some time, so work with another student on this problem and compare you
results with other groups.
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Figure 3.3: Example of a rhythmic Palindrome in Berg’s Music

3. Do you notice any pattern in the triangles? Do you see any symmetry? Describe your
observations.

4. Can you predict the entries of the next row of each triangle? Describe your strategies.

3.2 Patterns in the Palindrome Triangles

Did you notice that the addition pattern from Pascal’s triangle works sometimes in the two new
triangles? Try adding up two numbers and compare the result with the entry below. This seems
surprising! Why does it sometimes work and sometimes not? To find out, we will start with the
musical triangle.

5. Find a place in the musical triangle where the addition pattern works and write out the
corresponding musical palindromes. Can you see how to create a palindrome in the lower
row using the rows above? You can also fill in Figure 3.6.

6. Now try a place where the addition does not work. Write out the corresponding musical
palindromes. Can you see what happens? You can also fill in Figure 3.7.

By now you have a good sense of how to count musical palindromes and why the addition
patterns emerges from the triangle.

7. Independent Investigation: Look at examples for geometric palindromes to under-
stand why the addition pattern sometimes works and sometimes fails. Explain your
reasoning.

3.3 The Mystery of Palindromes

But the mystery of comparing the two kinds of palindromes is still unsolved...

8. Compare the two triangles and see if you can find a musical palindrome for a corresponding
geometric palindrome. Which cases should be easy? Where do you get stuck?
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Row Number = Number of Counts

Column Number = Number of Notes

Numbers start at zero.

Figure 3.4: Musical Palindrome Triangle

Did you notice that all the entries in the triangles are the same except for the places where the
musical triangle has zeros?

9. Why doesn’t the geometric triangle have any zeros?

10. Why does the musical triangles have zeros?

Now the challenge seems to be that even if the numbers in the triangels agree, it is not clear
how to take a musical palindrome and make a geometric one and vice versa! For instance, for 4
counts and 2 notes there are 2 musical palindromes and 2 geometric palindromes.

11. Can you see how to take 0110 and make it into a geometric palindrome? Be creative! You
can use Figure 3.8 for your result. Write down your strategy.

12. Now make sure that your strategy works for all cases. Can you use your idea also to get a
musical palindrome from a geometric palindrome? You can use Figure 3.9 to test your idea.
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Row Number = Number of Counts

Column Number = Number of Notes

Numbers start at zero.

Figure 3.5: Geometric Palindrome Triangle

6 counts

Two Notes

Two NotesOne Note

Insert 0Insert 1

5 counts

Figure 3.6: Addition in Part of the Musical Palindrome Triangle
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6 counts

Three Notes

Three NotesTwo Notes

Insert 1 Insert 0

5 counts

Figure 3.7: Addition in Part of the Musical Palindrome Triangle Fails

010100110

Figure 3.8: Musical to Geometric Palindrome
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??????

Figure 3.9: Geometric to Musical Palindrome
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3.4 Further Investigations

3.4.1 Which palindromes are better?

We have thoroughly investigated two different kinds of rhythmical palindromes, but which one is
better? And better in which sense?

13. Independent Investigation: Invent a piece of music, just using rhythms, that uses
some palindromes and some rhythms that are not palindromes. You can use the software
ABCdrums from Rachel Hall’s Website http://www.sju.edu/~rhall/Multi/drums.

html to help you play your piece. Now play your composition to several listeners and
see if they can hear the palindromes. The purpose of this activity is to find out if we can
hear palindromes at all, and if we can, which kind of palindromes are easier to hear.

3.4.2 Triangle Fractals

Look at Sierpinski’s triangle in Figure 3.10. If you “zoom in” you can see that the triangle structure
repeats itself over and over again. We call such self-similar objects fractals.

14. Independent Investigation: Look at our musical and geometric palindrome triangles
and see if you can find fractal-like structures. You might want to use color to emphasize
special numbers or shapes.

3.5 Connections

Palindromes also play an important rule in other forms of art, for instance in poetry.

15. Find all palindromes in the poem “Dammit I’m mad” by Demetri Martin (American
Comedian and Artist; 1973 - ).

Dammit Im mad.

Evil is a deed as I live.

God, am I reviled? I rise, my bed on a sun, I melt.

To be not one man emanating is sad. I piss.

Alas, it is so late. Who stops to help?

Man, it is hot. Im in it. I tell.

I am not a devil. I level Mad Dog.

Ah, say burning is, as a deified gulp,

In my halo of a mired rum tin.

I erase many men. Oh, to be man, a sin.
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Figure 3.10: Sierpinski’s Triangle.

Is evil in a clam? In a trap?

No. It is open. On it I was stuck.

Rats peed on hope. Elsewhere dips a web.

Be still if I fill its ebb.

Ew, a spider eh?

We sleep. Oh no!

Deep, stark cuts saw it in one position.

Part animal, can I live? Sin is a name.

Both, one my names are in it.

Murder? Im a fool.

A hymn I plug, deified as a sign in ruby ash,

A Goddam level I lived at.

On mail let it in. Im it.

Oh, sit in ample hot spots. Oh wet!

A loss it is alas (sip). Id assign it a name.

Name not one bottle minus an ode by me:
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Sir, I deliver. Im a dog

Evil is a deed as I live.

Dammit Im mad.

”Weird Al” Yankovic’s song Bob is a parody of ”Subterranean Homesick Blues” by Bob Dy-
lan and contains many palindrome phrases, see http://www.youtube.com/watch?v=Nej4xJe4Tdg.

In San Diego, you can walk across a bridge and play the 488 chimes while you walk. The song
you hear was composed by Joseph Waters and plays the same in both directions to accomodate
walking in either direction.

Figure 3.11: Bridge in San Diego with Palindromic Chimes.
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Chapter 4

Tuning and Intervals

4.1 How perfect is Pythagorean Tuning?

Sitting on the riverbank, Pan noticed the bed of reeds was swaying in the wind, making a
mournful moaning sound, for the wind had broken the tops of some of the reeds. Pulling the
reeds up, Pan cut them into pieces and bound them together to create a musical instrument,
which he named “Syrinx”, in memory of his lost love

Ovid (Roman Poet; 43 BC - AD 18/19)

Have you ever watched someone tune a guitar? Or maybe even a piano? The lengths of the
strings have to be adjusted by hand to exactly the right sound, by making the strings tighter or
looser. But how does the tuner know which sound is the right one? This question has been asked
throughout history and different cultures at different times have found different answers. Many
cultures tune their instruments differently than we do. Listen for instance to the Indian instrument
sarod in http://www.youtube.com/watch?v=hobK_8bIDvk. Also, 2000 years ago, the Greek were
using different tuning ideas than we do today. Of course the Greek did not have guitars or pianos
at that time, but they were still thinking about tuning for the instruments they had and about
the structure of music in general. The pan flute, one of the oldest musical instruments in the
world, was used by the ancient Greeks and is still being played today. It consists of several pipes
of bamboo of increasing lengths. The name is a reference to the Greek god Pan who is shown
playing the flute in Figure 4.1.

For the following investigations you need to make your own “pan flute” out of straws. Straws
for bubble tea1, work better than regular straws since they have a wider diameter. You need to
plug the bottom with a finger to get a clear pitch. Put your lower lip against the opening of the
straw and blow across the opening (but not into it). It helps to have some tension in the lips, as
if you were making the sounds “p”. Also, for shorter straws you need more air pressure than for
longer straws.2

1. Take a straw and cover the bottom hole while blowing over the top hole. Practice until you
can hear a clear note. Why do you think we hear a sound?

1“Bubble tea” is the American name for pearl milk tea from Taiwan. You need straws with a larger diameter to
drink bubble tea, since the tea contains small balls made of starch.

2Tubes with diameter 1
10

of their length are easiest to play!
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Figure 4.1: Pan playing the pan flute.

2. Do you think the sound will be different if the straw is longer or shorter? Explain your
thinking.

3. Take a rubber band, hold it tight between two hands and have someone pluck it. Can you
hear a clear note?

4. Take a rubber band, stretch it over a container and pluck it. Can you hear a clear note?
Why do we hear a sound?

5. Do you think the sound will be different if the rubber band is longer or shorter? Tighter or
looser? Explain your thinking.

6. Classroom Discussion: How is sound generated? What exactly is vibrating? What is a
sound wave? How do different musical instruments like drum, guitar, violin and trumpet
generate sound?

For the next investigations we will use the modern piano as a reference tool, so that we can
compare our sounds and give them labels. Even with the piano it is quite difficult to hear if two
sounds are the same or not. If you have difficulties, turn to someone who has practiced music for
a long time for support.

7. Take one straw and cut it such that it has the sound of any white key on a piano (except for
the F and the B key, see Figure 4.2. We will discover later why these keys don’t work here.)
You can go to
http://www.play-piano.org/play_online_piano_piano.html to use the online piano.

8. Take a second straw and cut it so that it has a length of 1
2 of the first straw.

9. Take a third straw and cut it so that it has a length of 2
3 of the first straw. Be precise!
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Figure 4.2: piano keys with labels.

10. Take a fourth straw and cut it so that it has a length of 3
4 of the first straw. Be precise!

11. Compare the sounds of 2 straws at a time. We call two notes sounding at the same time an
Interval. We write e.g. (1, 2

3 ) for the interval of the first straw and the straw with length
2
3 . Listen carefully: which two straws sound the most alike? You can also sing the notes of
the 2 straws and listen to the interval to make your decision.

12. Classroom Discussion: Share your intervals with the class. Decide together which fraction
gives the “most alike” interval.

We call the interval that sounds the most alike an Octave . Human brains seem to be hard-
wired to perceive these sounds as alike or even the same. The thalamus is a part in the brain of
mammals that is built in layers of neurons that correspond to octaves. See Figure 4.3. Addition-
ally research shows that rhesus monkeys have “same” responses to melodies that are one or two
octaves apart but “different” responses to other melody shifts.

Figure 4.3: Thalamus in the Human Brain.

This explains why we can find octaves in cultures all over the world even though their music
may sound very different. Even though all cultures share octaves, there are many ways to divide
the octave into smaller intervals. We call those choices scales. In modern western culture, the
major and minor scale are the most prominent scales. For example the C major scale corresponds
to the white keys on a piano. Notice that on a piano you have to go up or down 8 white keys to
travel an octave (starting on a white key and counting this first key as one of the 8).
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You can go to http://www.play-piano.org/play_online_piano_piano.html to play the C-
major scale. Take the intervals (1, 2

3 ) and (1, 3
4 ) and see if you can find the corresponding intervals

on a piano.

13. Take your pair of straws for the interval (1, 1
2 ). How many white keys are between the notes

if you count the beginning and the end note as well?

14. Take your pair of straws for the interval (1, 2
3 ). How many white keys are between the two

straw-sounds if you count the beginning and the end key as well?

15. Why do we call the interval (1, 2
3 ) a fifth3? Explain!

16. Why do we call the interval (1, 3
4 ) a fourth? Explain!

You have probably heard of the mathematician and philosopher Pythagoras of Samos
(Greek Philosopher and Mathematician; 570 BC - 495 BC), but did you know about the secret
society called the Pythagoreans? The Pythagoreans believed that everything in the world could
be explained using mathematics, including music. There is not much evidence about the life
of Pythagoras and his disciples, see Further Investigation 5. However, they are credited with
some important discoveries in mathematics. The Pythagoreans believed that all music could be
explained using mathematics. They used, for instance, the musical fifths to get to all other notes
in their scales as the next Investigations illustrate. The tuning they used is called Pythagorean
Tuning .

17. Take the interval (1, 2
3 ). Now take a third straw and cut it such that the length is 2

3 of the
previous 2

3 straw. How much of your longest straw is your new, very short straw? Write
your answer as a fraction and explain your reasoning.

18. What is the label of your new straw on the piano? Is it in the same octave as the first two
straws? Can you see how to use the fraction to determine whether your new note is in the
first octave or not? From now on we will call this octave (between our first two straws) our
main octave .

19. Compare the two fractions 1
1 and 1

2 , whose sounds lie an octave apart. Which fraction
operation do we have to do to get from one to the other? Explain how to go up and down
octaves using fractions.

20. By looking at any fraction, how can you tell whether the corresponding note will be in the
main octave or not? Explain your reasoning.

21. Take the fraction from Investigation 17. How can we use it to get a new fraction corresponding
to the same note in the main octave?

22. You just found a fraction representation of a note in your main octave that corresponds to
a fifth above a fifth. Continue the pattern by taking the next fifth and so forth. If you
can’t hear the sound of your straw anymore, see if you can find the mathematical pattern to
continue this quest in theory. You should find a list of 5 fractions.

3We have to distinguish between the musical fifth (which is a specific interval between two notes), and a math-
ematical fifth (which is the fraction 1

5
.)
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Figure 4.4: Medieval Woodcut showing Pythagoras.

23. Draw a number line from 1
2 to 1 and label the first 5 fractions you found.

24. Look at a piano keyboard. How many steps are there in a fifth if you include the black keys?

25. We said earlier that a fifth corresponds to five white keys on the piano keyboard if you don’t
start from a B. Use Investigation 24 to argue why we had to exclude the B.

26. Using investigation 24, how many fifths do we have to go up on a piano keyboard before we
return to the same note (some octaves higher)?

27. Now we will use the fraction 2
3 to go up by fifths. Find the fraction representation of the

note in the main octave that corresponds to 12 fifths above your original note. Explain your
strategies.

28. How far is the fraction from investigation 27 from 1? Did you expect this answer? Explain.

29. Does the chain of fifths ever end? Use fractions to explain your answer.

30. Use the chain of fifths to explain problems that arise with Pythagorean tuning.

31. Classroom Discussion: Does the chain of fifths end or not? Compare your result of the
fraction computation with the result on the piano keyboard. How perfect is Pythagorean
tuning?
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There are more problems with the Pythagorean tuning than the one you just discovered. A ma-
jor third4, e.g. the interval CE doesn’t sound very nice in Pythagorean tuning. When thirds were
used more frequently during the Renaissance and Baroque period, people abandoned Pythagorean
tuning in favor of other tuning methods.

4.2 Frequency, Fractions and Ratios

The “height” of a sound is called pitch and our perception of pitch arises from the frequency of the
sound. The frequency measures how fast the sound wave vibrates. In a long straw (big number)
the air vibrates more slowly (small number) and in a short straw (small number) the air vibrates
faster (big number), which means the length of the straws is inversely-proportional to the speed
of vibration. For simplicity we will assume that the fractions for frequency are just the reciprocals
of the fractions for length, i.e.

frequency =
1

length
.

For example a straw of length 1
2 sounds with a frequency of 2

1 .
The unit of frequency is hertz (Hz), named after Heinrich Hertz (German Physicist; 1857 -

1894). 1 Hz means that an event repeats once per second.

Figure 4.5: Heinrich Hertz.

We want to redo the above investigations thinking about frequency instead of length.

4A major third consists of 2 whole steps, see page 36 for a definition of whole steps and Chapter 6 for more
investigations about musical intervals and chords.
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32. Write the intervals (1, 1
2 ), (1, 2

3 ), and (1, 3
4 ) using frequencies instead of length.

33. By comparing the two frequencies that make our main octave, which fraction operation do
we use to go up and down octaves? Explain.

34. Compute the ascending fifths as above using frequencies instead of length. Explain your
strategies.

35. Draw a number line from 1 to 2. Label your first 5 frequency fractions.

36. Since the process of taking more and more fifths results in notes that sound out of tune, the
Pythagoreans used the fraction 3

4 to help them. Recall the key on the piano corresponding
to the fourth, i.e. to the fraction 3

4 . How many fifths do we use to go up on the keyboard in
order to get to the same note as the fourth (ignoring octaves)?

37. Why is it more accurate to work with the fourth instead of the fifths in investigation 36?

38. Label the frequency that corresponds to the fraction 3
4 on your number line.

Your main straw could have been any length in the above investigations and hence correspond
to any note from a white key (excluding B, of course). For the next section we will assume that it
corresponds to the note C. The mathematics works out the same if you use another note as your
starting point, but it makes it easier to read if we agree on a base note.

We want to discover how the Pythagorean fifths will give us the entire C-major scale!

39. Fill in the first row in table 4.1. If your main straw would correspond to the note C, how
do the other frequency fractions we found relate to the keys on the piano? You can use the
fractions you computed in the above investigations. Just match them with the C-major scale
instead of the scale from your straws.

Table 4.1: Frequency Table
Note C D E F G A B C

Frequency Fraction 1
1

2
1

Ratios between Frequency Fractions

40. Classroom Discussion: Compare the first row in table 4.1. Now look at the ratios5 between
adjacent fractions on your number line. Fill in row 2 in table 4.1. What patterns do you
notice?

You just discovered the so called Pythagorean Tuning based on C. Unfortunately there are
some problems with this tuning method... you will discover some of these in the next Investigations:

5To find the ratio between two fractions you need to divide one fraction by the other - you compute a fraction
of fractions. We will divide the larger fraction by the smaller to make it easier to compare.
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41. We tried to avoid the “incorrect” last fifth, also called the wolf interval , by chosing the
frequency 4

3 instead of the last power of 3
2 . Will this solve the problem or will there still be

a wolf interval? Explain.

42. Your piano is tuned in Pythagorean tuning based on C. Imagine you have a melody starting
with the fifth CG. Do you think the song would sound “bad” if you started playing it on a
different note? Explain.

So it seems that for some melodies the piano will sound in tune while for other melodies or other
starting points of you melody it might sound out of tune. Musician would say: “If I played a song
that uses a different key it would sound out of tune!”. This key is not the same as a key on a
keyboard. It is an abstract term roughly describing a set of notes that a piece of music is most
likely to use. You can for instance say that a song is being played in the key of “C major”.

That is not what we wanted! It gets even weirder:

43. Musicians call the step from one key to its closest neighbors (can be black or white) a half
step. Two connected half steps are called a whole step. For example, CD is a whole step,
while CC] is a half step, as is EF . Compare the ratios for a half step and a whole step
in Pythagorean tuning (table 4.1). What do you notice? Are two half steps really a whole
step? Remember to use ratios and differences in your argument.

44. Why is Pythagorean tuning a very natural way of tuning, even though problems arise?

4.3 The Roots of Equal Temperament

Since the Pythagorean tuning is not the same for all keys, other ways of tuning were developed over
time. In the 18th century well tempering was used, in which compromises were made such that
every key would sound good but slightly different. One advantage of each key sounding different
is that the mood of a piece of music can be expressed by the choice of key.

Since the middle of the 19th century equal temperament is most commonly used. This tuning
requires a new mathematical idea which you will discover in the next Investigations. We know
that the frequency interval (1, 2) gives us an octave. It is customary in Western Music to have 12
steps in an octave. Therefore we need to find a way to split the interval between 1 and 2 into 12
“equal” steps. Since we are dealing with ratios here, we need all the steps to have the same ratio.
Look back at table 4.1 to see 7 steps (ratios of frequency fractions) that are not all equal.

45. Split the interval between 1 and 2 into 2 “equal” steps such that the ratios are the same.
This means we are looking for a fraction, say x, between 1 and 2, such that the ratio of 2
and x is the same as the ratio of x and 1. What is x? Describe your strategy.

46. Compare your solution with the following problem: Split the interval between 1 and 2 such
that differences are the same. This means we have to find a number, say y, between 1 and
2 such that the difference between y and 2 is the same as the difference between y and 1.
What is y? Did you get the same answer as in the last investigation?

47. Classroom Discussion: Compare the two solutions above to get “equal size” steps in the
interval [1, 2]. Compare your strategies. What does “equal size” mean? Compare your
results. Now go back to Investigation 23 and Investigation 35 and explain why we did not
see any useful spacing pattern on the number lines.
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48. Split the interval between 1 and 2 into 3 steps with equal ratios. Describe your strategy.

49. Split the interval between 1 and 2 into 4 steps with equal ratios. Describe your strategy.

50. Split the interval between 1 and 2 into 5 steps with equal ratios. Describe your strategy.

51. Split the interval between 1 and 2 into 12 steps with equal ratios. Describe your strategy.

52. Summarize how to find the frequencies for the equal temperament tuning.

53. What are some advantages and some disadvantages of equal temperament tuning?

You really understand Pythagorean tuning and equal temperament tuning now, and you have
traveled through many centuries of music and mathematics history. Hidden in the above mathe-
matics is some history about numbers:

The Pythagoreans believed that every number could be written as a fraction. Mathematicians
call these numbers Rational Numbers. According to legend Hippasus of Metapontum
(Greek Philosopher; 500 BC - ) was put to death by Pythagoras because he had revealed the
secret of the existence of irrational numbers: numbers that can not be written as fractions.

Figure 4.6: Hippasus of Metapontum.

It might seem easy to grasp for us now, but every time mathematicians expand their ideas of
numbers it is like a small revolution. And there are more than just irrational numbers! There are
for instance complex numbers and imaginary numbers and surreal numbers. For the latter you can
read the book Discovering the Art of Mathematics: The Infinite.

54. Do you find it surprising that the Hippasus was put to death?

55. Name one irrational number. Do you know more?
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4.4 Further Investigations

There are other ways of tuning that you have not discovered yet.

F1. Research the mathematics behind meantone tuning. How is it different from Pythagorean
and equal temperament tuning? How is it similar?

F2. When (and why) was meantone tuning used?

The way Greek mathematicians first encountered irrational numbers was not in music, but in
geometry. You will solve their problem in the next Investigations.

F3. In a square with side length equal to 1, what is the length of the diagonal?

F4. Find a proof of the fact that
√

2 is an irrational number. You can look at books or go
online. Explain the proof to someone else without looking at your notes to see if you fully
understand it.

4.5 Connections

F5. Read “The Ashtray: Hippasus of Metapontum (Part 3)” by Errol Morris published in the
New York Times Opinionator. What do we actually know about Hippasus?

F6. Figure 4.7 shows graphs of waves with different frequencies. How does this relate to waves
of air in the straws?

Figure 4.7: Graphs of waves with different frequencies.

F7. Check out Ruben’s Tube videos on youtube.com. How does this connect to graphs of
sound waves? See Figure 4.8.

The following video link shows a fascinating 2-dimensional “Ruben’s plane” with flames
lighting up to music:
www.iflscience.com/physics/amazing-2d-rubens%E2%80%99-tube-visualizes-sound-plane-fire

F8. Different cultures at different times also used varying scales for their music. In Timothy
Johnson’s book [9], you can investigate (diatonic) transposing patterns for different scales.
Proving why these patterns occur is challenging and really fun.
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Figure 4.8: A Ruben’s Tube Experiment.
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Chapter 5

Fractal Music

The most complex object in mathematics, the Mandelbrot Set ... is so complex as to be
uncontrollable by mankind and describable as “chaos”.

Benoit Mandelbrot (French American Mathematician; 1924 - 2010)

5.1 Fractals

Among the most beautiful images mathematics can create are images of fractals, see Figure 5.1.
Go to http://www.youtube.com/watch?v=G_GBwuYuOOs and watch the Mandelbrot set zoom in
closer and closer.

1. Looking at the Mandelbrot fractal, do you think mathematics can be beautiful?

Figure 5.1: Mandelbrot Fractal

First, we want to see what the secret of fractals is. Construct the following three examples of
fractals. Comparing them, what do you think is special about fractals?
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2. Skyline:

Construct a line segment. Divide it into proportions x:y:z (going from left to right) where
x+y+z=1. You can make a simple choice like x = y = z = 1

3 or a more interesting one like
x = 0.3, y = 0.5, z = 0.2. Construct a square on the middle portion. Now divide each of
the three horizontal line segments into the same three proportions and construct squares on
the middle portions. Continue until you see a nice “skyline”.

3. Koch’s Snowflake:

Construct an equilateral triangle (all sides have the same length). For one of the edges
(mathematicians call the sides of a triangle edges) of the triangle, divide the edge into three
equal parts. Construct an equilateral triangle on the middle third of the line and then erase
the base of that triangle. Repeat this process on each of the four line segments. Repeat this
process for all edges of the original triangle. You will see a nice “snowflake”.

4. Sierpinski’s Triangle:

Draw an equilateral triangle. Connect the midpoints of the edges. Ignore the new middle
triangle that you get and repeat the process for the other three triangles. Repeat this process
until you see a beautiful pattern of triangles emerge.

5. Explain what a fractal is given the examples you have seen so far.

You have seen that a fractal is an object that displays self-similarity . This can be true for
an object from nature, like cauliflower or fern, or for a more abstract mathematical objects like
Koch’s Snowflake see Figure 5.2.

We want to create a fractal that has different replacement rules. Let’s make a different skyline
where you start with x : y : z such that x+y+ z = 1 but now we draw an arc on top of the middle
piece and a skyline piece on the first and last section. This is our starting point, see Figure 5.3.
Now, whenever you see a straight line you replace it with the skyline as before (erecting a square
on the middle section), but whenever you see a arc, you place another semicircle on top of it with
some distance you can decide on. Do you like this skyline?

6. Come up with your own skyline! Draw a picture and explain your replacement rules.

5.2 Musical Fractals via L-Systems

Now we have played with different fractal structures but the big question is: Can we somehow
take this idea of self-similarity and translate it into music?

7. Independent Investigation: Compose your own piece of fractal music! Be creative.
Explain in detail how you used the idea of a fractal.

Building on the idea of C. Hazard and C. Kimport, see [8], we want to to create music using
fractals via L-Systems: An L-System is a method of generating long strings of symbols from a
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Figure 5.2: Abstract Fractals like Koch’s Snowflake and Sierpinski’s Triangle

short initial string (or axiom) and a set of production rules, one for each symbol. From here, we
generate longer strings by replacing each symbol with its respective rule, and repeat this process
until we have a string of a desired length. Here is an example:
Axiom:

AB

Figure 5.3: New Skyline starting point.
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Production Rules:

A → ABC

B → CAD

C → DC

D → BDB

Start out with the axiom, “A B”. The production rules tell us to replace A with ABC and B with
CAD. Therefore the string would become “A B C C A D”.

8. If we use the same production rules with this new string, what do we get? What do you get
if you do it one more time?

9. Independent Investigation: We want to translate these strings into music. Can
we read the letters as names of notes? Or names of chords? How about names for
lengths of notes? Choose your favorite method and create your own piece of music.
You can use the software finale notepad http://www.finalemusic.com/notepad/ if
you are familiar with the standard music notation to help you create and play your
piece. If you are not familiar with reading and writing music you can compose a rhythm
instead using ABCdrums from Rachel Hall’s Website http://www.sju.edu/~rhall/

Multi/drums.html.

10. Classroom Discussion: Play your piece of music to your group or the class and share
your fractal composing method with them. What is similar and what is different about the
compositions in your group?

5.3 Musical Fractals using Turtle Graphics

You have used a mathematical idea to create music but we are missing the connection with the
images that were so appealing about fractals. So let’s create a musical fractal next that is based
on an image of a mathematical fractal.

In the Turtle Graphics interpretation, there are four basic symbols:

F = Move forward one unit and draw a line while you are moving

f = Move forward one unit but don’t draw a line

+ = Turn d degrees to your left

− = Turn d degrees to your right

As before we can choose an axiom and assign production rules using these 4 symbols, but now
you have to also pick d, the number of degrees. Pick a point on your page where you will start
drawing and a direction you are facing (so that you know which direction you will draw in next!).
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11. Independent Investigation: Can you figure out which choice of axiom and produc-
tion rules will give you Koch’s snowflake? Here are some hints: Think first about which
symbols give you an equilateral triangle. Do you know how big the angles are in a
triangle with sides of equal length?

Pick d as this angle and remember that d has to stay the same throughout your axiom
and production rules.

Now we want to find the production rules. It may be easier to first find the rule that
creates one edge, as shown in Figure 5.4. Try out if your turtle graphics creates the
correct fractal!

Can you now find the axiom and rule for Koch’s Snowflake1 ?

Figure 5.4: The first step to Koch’s Snowflake...

Turtle graphics is an interesting name for the procedure described above. Do you have any
idea why it is called turtle graphics? Look at Figure 5.5.

Figure 5.5: LOGO and Turtle Graphics

Where is the music connection? Instead of interpreting the symbols as notes or chords, they
are interpreted as instructions to “draw” a melody on the staff. In our musical interpretation,
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horizontal motion is seen as note length, while vertical motion is seen as change in pitch. We can
choose a starting note and a length that corresponds to the geometric unit. Also we can decide
how we want to move “up” on the staff, by half notes or whole notes or by staying within a scale.
So there is still lots of room to play!2

12. Using the above method, create a melody that corresponds to Koch’s snowflake. Play your
melodies to your group and compare. If you are unfamiliar with playing music, use the
computer to help you perform your piece.

5.4 Finding Fractals in Music

We found different ways to use the idea of fractals to create music. How about music that already
exists? Can we find fractals in music? Of course not all musical pieces show fractal-like structures,
but there are some famous ones that do.

13. Consider the following rhythm in Figure 5.6. Can you find a repeated use of the pattern
AAB where each B section lasts twice as long as each A section? How many are there?
Describe how this reminds you of a fractal.

Figure 5.6: Finding Fractal Structure in Sheet Music

Now we are ready for a famous example: Bach’s Cello Suite 3, see Figure 5.7.

14. Harlan J. Brothers, [2], detected repeated use of the pattern AAB on different scales, where
each B section lasts twice as long as each A section. See Figure 5.7. Can you find those
sections? How does the structure of the piece resemble a fractal? Explain.

2If you only choose notes from one scale, for instance the pentatonic scale, your piece is more likely to sound
traditionally pleasing than if you choose half-note steps.
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Figure 5.7: From Bach’s Cello Suite

5.5 Connections

Investigate Discovering the Art of Mathematics: Geometry to play with dimensions of fractals.

Investigate Discovering the Art of Mathematics: Calculus to see if the area inside a fractal can
be finite or not.
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Chapter 6

The Space of 2-Chords

6.1 Maximally Even Chords

Music is architecture translated or transposed from space into time; for in music, besides the
deepest feeling, there reigns also a rigorous mathematical intelligence.

Georg Hegel (German Philosopher; 1770 - 1831)

Do you know what a chord is? A chord is a number of notes sounding at the same time, there
could be a 2-chord with 2 notes sounding but also a 5-chord with 5 notes sounding simultaneously.
3-chords are the most popular ones, you might have seen them written for guitar or piano players
above the lyrics of a song, for instance C major or A minor.

The kinds of chords and scales that people found pleasing to listen to changed over the centuries.
For instance minor and major thirds (2 notes that are 3 or 4 half steps apart, e.g. CE[ or CE)
which are now part of basically every piece in Western Music where uncommon before the 15th
century. Chords consisting of 4 notes became popular in the 17th century. It is interesting to
notice how much music, art and mathematics change over time.

Now let’s say you want to know how many (different) chords there are. How would you do
that? Is there a connection to our questions in Chapter 2 about counting possible rhythms? You
will notice that there are a lot of possible chords! What if I didn’t want to count all of them but
just very special chords?

First we need to talk a bit about music, since not all readers have a background in music.
There are 12 notes in traditional western music:

C C] = D[ D D] = E[ E F F] = G[ G G] = A[ A A] = B[ B. (6.1)

We say C sharp for C] and D flat for D[. Those two notes sound the same1 but musicians like
to distinguish between them for historic and harmonic reasons. In this chapter we will ignore this
distinction. Sometimes we will also use numbers instead of notes:

C = 0, C] = 1, . . . , B = 11.

We call the distance between two notes in our list (6.1) a half step.

1in equal temperament
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After 12 half steps (an octave) the notation repeats, because we hear those notes as very
similar. See Chapter 4 for more information about octaves and pitch. For the purpose of thinking
about chords we won’t distinguish between a higher sounding C and a lower sounding C. In our
introduction, Chapter 1, you will find an explanation for the standard music notation.

If we identify all notes that represent the same sound up to octaves, we can think of the notes
living around a circle, repeating over and over again, see Figure 6.1.

C

C]

D

D]

E

F

F]

G

G]

A

B[

B

Figure 6.1: Writing the Notes around the Circle.

As a warm-up, we want to find all 3-chords that are “the most evenly spread out” around the
circle. This property is called maximally even and was first described by John Clough (Music
Theorist; - ) and Jack Douthett (Mathematician; - ) in 1991.

1. Independent Investigation: How many different arrangements for evenly spread out
3-chords are there total? Use Figure 6.2 to draw your solution. How about 4-chords,
5-chords, . . . ? Do you notice any pattern?

If you want to investigate more about maximally even chords, try the exercises in T. Johnson’s
book, [9].
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Figure 6.2: Draw your Table Arrangements

6.2 Chord Geometries and The Space of 2-Chords

Mathematics and music, the most sharply contrasted fields of scientific activity which can
be found, and yet related, supporting each other, as if to show forth the secret connection
which ties together all the activities of our mind, and which leads us to surmise that the
manifestations of the artist’s genius are but the unconscious expressions of a mysteriously
acting rationality.

Hermann von Helmholtz (German Physician and Physicist; 1821 - 1894)

Figure 6.3: Dmitri Tymoczko

Dmitiri Tymoczko is a Music Professor at Princeton University, see Figure 6.3, who has dis-
covered how to represent the universe of all possible musical chords in graphical form, [14]. In this
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section we will investigate his program and figure out the mathematics behind his wonderful ideas.
Please go to the following link online and download the free software ChordGeometries by

Dmitri Tymoczko http://music.princeton.edu/~dmitri/ChordGeometries.html.
After you start the program ChordGeometries, go to Geometries and click on Dyadic Space.

A new window called mobius will open showing you a space of 2-chords, see Figure 6.4. If you

Figure 6.4: Dyadic Space

click on two keys of the piano, one of the points in the Moebius window will light up. Explore the
space by choosing different 2-chords and watching the point move in the mobius window.
On the above webpage you will find a link to a movie clip called “Deep Purple”, which plays the
music while you watch the 2-chords move through space. There are a few questions that come to
mind (we will answer them later in the investigations, for now just read them to see where we are
going):

1. Every chord (point) has two numbers attached to it, how do we know which numbers corre-
spond to which chord?

2. When you type in two chords after each other, say C E on the lower part of the piano and
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an octave like G G on the upper part, the path that the dot takes in the mobius window is
rather complicated. What is happening?

3. The points in space have different colors, from red over orange, yellow and green to blue.
What is the significance of the colors?

4. Why is the window called “mobius”?

Many mathematicians prefer to deal with numbers rather than the musical letters, and the
convention is to identify C = 0, C] = 1, D = 2, D] = 3, E = 4, F = 5, F ] = 6, G = 7, G] =
8, A = 9, B[ = 10, B = 11. What happens with the next C? We should call it 12 but on the
other hand we want every C to be the same when we think about chords. Mathematicians found
a solution for this problem, they just say that 12 is equivalent to 0 and write 12 ≡ 0.

2. If that is true, then what is 16 equivalent to?

3. If you would add two numbers what is the result equivalent to? For example, 8+4 = 12 ≡ 0.
Can you compute 9 + 6 ≡?

This new way of computing leads to an area in mathematics called Modular Arithmetic
which is used heavily in many parts of mathematics, for instance in number theory and in algebraic
geometry. You are actually using it every day, whenever you think about the clock! If you add 5
hours to 8 o’clock you get 13 o’clock but we usually call it 1 o’clock.

4. Did we just answer our first question? Go back to the program and try out if you understand
which number pair a 2-chord represents.

Do you remember how to draw the graph of a function using an x-axis and a y-axis? We will
do something similar here. Let’s take the 2-chord C] E, which corresponds to the number pair 1 4.
We will draw two axes, the x-axis horizontally and the y-axis vertically. They meet at x = 0, y = 0
which is called the origin. Start at the origin and go 1 to the right and then 4 up and draw a
point. This is your point in space which we label 1 4, see Figure 6.5.

5. Find the points for the 2-chords G G, C G and A D] in the graph, Figure 6.5.

6. What happens if we continue on the x-axis towards the right, and we pass 11? What if we
travel to the left of the origin? Take a piece of paper and label it with more numbers on
the x-axis, at least 12 numbers to the left of the origin and 12 to the right of the origin.
Now hold up the paper and press the points together that should be identified on the x-axis
because they are equivalent. What shape do we get?

The next step is a bit tricky with paper, because we can’t stretch it as we would like. So either
you have to do this in your head or you can use a slinky to visualize the next step, see Figure 6.6.

7. Take your paper and label it additionally with more numbers on the y-axis, at least 12
numbers above the origin and 12 below the origin. Bring it back into the shape that identifies
all the points on the x-axis and now, looking at the tube of paper in your hand, you have to
identify the corresponding points on the y-axis. What shape do you get? Can you draw a
picture?
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Figure 6.5: Graphing the point (1, 4) in the xy-plane.

Mathematicians call this shape a torus. From the whole infinite 2-dimensional plane we really
only need the section that covers 0, . . . , 11 on the x-axis and 0, . . . , 11 on the y-axis, since everything
else overlaps with this region. We call this the Fundamental Domain , see Figure 6.7.

This is great as an image for the space of 2-chords but doesn’t quite explain the mobius window
from ChordGeometries. So what are we missing?

8. Compare the numbers on our fundamental domain and the number in the mobius window.
What is the difference?

You probably found that we need to identify more points in our fundamental domain. We (the
authors) decided to work with the triangle underneath the diagonale in our fundamental domain.
See Figure 6.8. All the 2-chords in that triangle are the same as the ones above the diagonal, if we
ignore the order in which the notes are played. For instance 1 9 is the same as 9 1. Unfortunately,
when we look at just the lower triangle, we still don’t have the same region as in the mobius
window. What is happening? Here is a hint: Look at Figure 6.9. We cut our triangle under the
diagonal into two pieces and compare the right one of the two pieces with the triangle that you
can see under the x-axis. Convince yourself that the 2-chords in these two areas are the same (up
to order)!
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Figure 6.6: Slinky

1

5 1

4 2

1 5

2 41 4

3 32 31 3

1 2 3 22 2

4 13 12 11 1

11

10

9

8

7

6

5

4

3

2

1

0

0 111098765432

Figure 6.7: Fundamental Domain of Musical Torus
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Figure 6.8: Fundamental Domain of Musical Torus with Triangles
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Can you see the mobius window now? All this cutting and moving might make you wonder...

9. Cut out the square that has exactly the number pairs from the mobius window. Can you see
how two of its edges (sides) have the same number pairs? Glue the paper to itself connecting
all equal number pairs. Describe the shape you get.

The loop that you get was invented by August Ferdinand Moebius (German Mathematician
and Astronomer; 1790 - 1868) in 1858, although it was independently discovered by Johann
Benedict Listing (German Mathematician; 1808 - 1882), who published it, while Moebius did
not. It is famous for its property of having only one side.

10. Take a pen and draw a line starting anywhere on the strip, continuing along the strip. Will
you connect again with your original line? Why or why not?

Mathematicians say that the Moebius strip is non-orientable . See Figure 6.10. As mathemati-

Figure 6.10: Moebius Strip

cians we are excited to realize that the space of 2-chords is the same as the famous Moebius strip!

We answered two of our original four questions, but the others should be easier, now that we
understand the space of 2-chords better.

11. In question 2 on page 52 we were wondering why the path between some points in space is
so complicated. Can you answer this question now? It might help to look at the Moebius
strip instead of the Moebius window.

12. The last puzzle is the choice of colors in the moebius window. Here are two hints:

• Download the first Chopin video clip from the ChordGeomtries download page and
notice the choice of colors.

• Go back to Section 6.1 and connect your results from there with our color problem here.

We answered our 4 questions about the ChordGeometry program and have now a much deeper
understanding of the geometrical view on musical chords.
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6.3 Further Investigations

F1. How could a musician benefit from the knowledge of the geometry of chords? Why is
this research interesting to a mathematician? If you don’t know an answer interview some
professors!

F2. We want to play some music on the torus! If you take a curve (i.e. a curved line) on the
torus, you can think of it as a possibly curved line in your xy-coordinate system. Every point
corresponds to a 2-chord, so really your curve on the torus is a sequence of 2-chords.

Draw the two curves in Figure 6.11 in the xy-plane and then play the corresponding 2-chords
on a piano.

Figure 6.11: 2 Curves on a Torus

F3. Now draw the diagonal x = y in the xy-plane. What does the curve look like on the torus?
Play the 2-chords on the piano.

F4. Compose your own torus music by creating a curve on the torus and playing the 2-chords.
Enjoy.
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Chapter 7

The Space of 3-Chords

A surprising proportion of mathematicians are accomplished musicians. Is it because music
and mathematics share patterns that are beautiful?

Martin Gardner (American Mathematics and Science Writer; 1914 - 2010)

7.1 Triadic Space

You successfully figured out the space of 2-chords. Here is a bigger challenge for you: Go to
ChordGeometries and click under Geometries on Triadic Space. Why does the space of 3-chords
look like a triangular prism? See Figure 7.1 for a screenshot of the triadic space.

Before we start our investigation, go to Tymoczko’s website
http://music.princeton.edu/~dmitri/ChordGeometries.html and play the video clip Chopin
through 4-dimensional space. Isn’t it beautiful? Tymoczko showed that a composer usually stays
within a range of some chords in triadic space and even found composer-specific patterns in the
chord progressions. The composers are probably unaware of these patterns but we can now see at
least one aspect that makes their music special ! Let’s see how his program works:

1. Play with different 3-chords and see where the points appear in the prism. Can you see any
patterns? For instance, where are the major chords (interval pattern1 of 4 3)? Where are all
the unison chords (all notes the same)? Explain all the patterns you find in detail.

First we need to understand how we can draw something 3-dimensional. Every chord corre-
sponds now to 3 numbers, for instance C-major, C E G, equals (0 4 7). If you have Zome pieces
(http://www.zometool.com) available, you can use the long blue pieces to make a big cube. De-
cide which vertex (corner) should be the origin and label the 3 edges emanating from the origin
with x, y and z. Make sure that they follow the right hand rule: if the thumb points in the
direction of the x-axis then the index funger points into y-direction and the middle finger into
z-direction. This is the typical mathematical convention for 3-dimensional space. See Figure 7.2
for an example of the point (2 1 1) in 3-dimensional space.

1The interval pattern records the distances between notes, measured in half notes. For instance the C-major
chord, C E G, has 4 half steps between C and G and 3 half steps between E and G.
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Figure 7.1: Triadic Space

Our goal is to find out how much of the 3 dimensional space we need so that each chord is
represented by exactly one point.

The first step that comes to mind is to ignore the repetition of notes on the axes. That means
we are just looking at one of the Zome boxes from before.

2. Imagine you walk inside that box (following a sequence of chords through space), if you walk
out the left side of the box, where do you enter the box again? What if you would fly through
the ceiling: where would you enter the box again?

The space you are looking at is called a 3-dimensional torus. As with the (2-dimensional)
torus that we saw before, we would like to glue some of its sides, but unfortunately we would need
4 dimensions to picture the result. Go to http://www.geometrygames.org/ and download the
free program Curves Spaces. Choose the basic 3-dimensional torus application to visualize what
the inside of a 3-dimensional torus looks like.

This is great! Unfortunately is doesn’t look like the triangular prism yet that we see in Chord-
Geometries. What’s happening? As in the 2-dimensional case we have to consider that number
triplets like (0 4 7), (4 0 7), (7 4 0) and (0 7 4) represent the same chord. We will consider first
just the two triplets (0 4 7) and (4 0 7).

3. How can you change the first one to get the second one?

4. Now take an arbitrary triplet (x y z). If you change it in the same way, what do you get?
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Figure 7.2: Point (2 1 1) in 3-dimensional Space

5. If we forget for a moment the third coordinate, you can picture the change of numbers in
the pairs (0 4) and (4 0) as a reflection at a diagonal. Draw a picture to convince yourself of
this.

In the 3-dimensional case, there is a plane inside your box, such that reflecting (0 4 7) at that
plane will give you (4 0 7). The same will work for any point (x y z), giving (y x z).

6. Can you picture the plane inside your box? Use more of the Zome tools for diagonals (yellow
pieces) and some paper and tape to show that plane.

7. Find the plane of reflection for the other change (0 4 7)↔ (7 4 0).

8. Find the plane of reflection for the other change (0 4 7)↔ (0 7 4).

Can you see all three planes now in your box? It helps if you also show some of the boxes next
to your original box (even though all boxes are really the same). Then turn your box so that you
look down one of the diagonals and see if you can detect a triangular tube beween the planes. This
is one step closer to the triangular prism, since can see now where the triangle comes from!

9. Which number triplets lie on the main diagonal (going through the origin)?

10. Label some of the triplets on the diagonals in your boxes. Can you see why it is enough to
just take one piece of the triangular tube?

Congratulations, you now understand the space of 3-chords!
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