Physics of Musical Instrument (woodwind instrument)

200221057

유종환

순서

- ◈ 관악기 소개
- Wave equation of sound
- Driven force
- Resonance in the pipe
- Open and closed pipe
- Out-off frequency
- Tone holes and fingerings
- Resister holes

관악기란?

금속·나무·대 등의 관을 입으로 불어서 관 속의 공기를 진동시켜 소리를 내는 악기

- Clarinet
- Oboe
- ♦ Flute
- Recorder
- Bassoon

Wave equation of sound

$$\frac{\partial^2 y}{\partial t^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2}$$

$$v = \sqrt{\frac{\gamma RT}{M}}$$

Driven Force

- ◆ 관악기 내의 공기가 공명을 하기 위하여 필요한 힘.
- ◈ Clarinet, Oboe등은 reed를 이용하여 소 리를 낸다.
- ◈ Flute이나 Recorder등은 flow-control로 소리를 낸다.

Clarinet

Bottle

Resonance in the pipe

Open and closed pipe

- ◈ Closed pipe-한쪽이 닫혀있고 한쪽이 열 린 pipe
 - ->Clarinet

- ◈ Open pipe-양쪽 다 열려있는 pipe
 - ->Flute, Recorder

$$\lambda = 4L$$

$$f_1 = \frac{v}{4L}$$

Standing wave in the closed pipe

$$P = p_0 \sin(kx + \frac{\pi}{2})$$
 이면,

경계조건:
$$p(x=L)=0$$

$$kL + \frac{\pi}{2} = n\pi \qquad L = \frac{(2n-1)\lambda}{4}$$

$$f_n = \frac{(2n-1)\nu}{\Delta I} : 닫힌 관에서의 진동수들$$

Standing wave in the open pipe

- ◈ 양쪽이 고정된 줄의 정상파 조건과 같다.
- ◈ 따라서 진동수는

$$f_n = \frac{v}{2L}n$$

Open & closed pipe

Open pipe

Closed pipe

Cutoff frequency

- ◈ Clarinet과 길이와 너비가 같은 관에 clarinet의 mouthpiece를 끼우고 불면?
- -> clarinet과 비슷한 소리가 난다
- ◈ 관의 길이를 점점 줄이면?
- -> 점점 clarinet과는 다른 음색을 낸다.

Cutoff frequency

The cutoff frequency of a lattice of tone holes depends on their size, shape, and spacing. The formula for calculating the cutoff frequency (Benade, 1976) is

$$f_c = 0.11 \frac{b}{a} \frac{c}{\sqrt{s(t+1.5b)}},$$

where c is the speed of sound (344 m/s), and a, b, s, and t (expressed in meters) are physical parameters, shown in Fig. 12.5.

FIG. 12.5

An open tone hole lattice indicating the parameters to be used in calculating

the cutoff frequency: a = the radius of the bore, b = the radius of the tone hole, 2s = the tone hole spacing, and t = the tone hole height.

Cutoff frequency

Tone holes

 As a pressure node : sound radiation at a hole

◆ Effective length: hole이있을 때 파동이 끝나는 지점까지의 길이

Tone holes

Hole의 크기에 따른 effective length의 변화

Tone hole의 배열

만약 hole의 크기가 충분히 크고 관의 길이가 300mm라면

L(도)	L(레)	L(OI)	L(파)	L(솔)	L(라)	L(人I)	니(도)
300mm	267mm	240mm	225mm	200mm	180mm	160mm	150mm

이런 식으로 배열 될 것으로 예상할 수 있다. 이와 가장 비슷한 형태가 Flute이다.

http://www.chrysalis-foundation.org/flute_tone_holes.htm

Tone hole의 배열

점선: pipe의길이

실선: Effective length

점선: a와 같은 공명

실선: 실제 파동의 진행

점선: a와 같은 공명

실선: 실제 파동의 진행

Cross-fingering

◈ 첫 번째 열린 hole 이하에서의 fingering

0		0	0	0	o°	o°	F	С
•	0	0	0	0	o°	o°	E	В
•	0		•	0	00	o°	Εp	Вь
•		0	0	0	o°	o°	D	А
•	•	0	•		•	o°	C#	G#
•	•	•	0	0	00	o°	С	G
•		•	0	•	•	o°	В	F#
	•		•	0	•	•	Bb	F
•	•	•	•	•	00	0°	А	Е
	•			•	•°	o°	G#	Ep
	•	•	•	•	•	o°	G	D
•	•	•	•	•	•	•°	F#	C#
•	•	•		•	•	•	F	С

Register holes

◈ 옥타브 사이를 조절하는 hole

◈ Pressure node에 위치

Resister holes

.....

References

- Thomas D.Rossing, The Science of Sound
- Arthur H.Benade, Fundamentals of Musical Acoustics
- Donald E.Hall, Musical Acoustics
- http://www.chrysalis-foundation.org

Physics of musical instrument (woodwind instrument)

End