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How music and mathematics Relate

1

Scope:

Great minds have long sought to explain the relationship between 
mathematics and music. This course will take you inside a 
fascinating subject filled with beautiful symmetries and simple 

mathematical explanations of musical sounds you hear every day. Exploring 
the connections between math and music, while assuming little background 
in either subject, will help you understand the seemingly simple sound of a 
vibrating string, the full sound of a symphony orchestra, an intricate Bach 
canon, how music is recorded, and even the voice of a loved one on the other 
end of the phone. Throughout the course, the central goal will be to reveal 
how mathematics helps us understand the musical experience.

Structured around the experience of listening to music, the course will start 
where all music starts: with vibrating objects. Whether a metal string, a 
tube of air, or a circular membrane, every instrument vibrates in particular 
ways, producing not only the frequency we notice most clearly but also a 
set of predictable overtones. The structure of these overtones, analyzed 
with mathematics appropriately called “harmonic analysis,” leads to myriad 
fascinating topics: why different cultures choose particular musical scales, 
how to tune such scales, why some intervals sound more dissonant than 
others, how to fool the mind with auditory illusions, and why Western scales 
(and pianos) are always out of tune. 

In addition to scales and intervals, rhythm forms a fundamental component 
of all music. The mathematics of rhythm is sometimes obvious, as in the 
time signature that closely resembles a fraction, but it sometimes hides itself 
well, as when a composer implicitly uses number theory to create a sense of 
instability in the music. 

Self-reference sometimes plays a role in composition, as famously noted 
by Douglas Hofstadter in his classic book Gödel, Escher, Bach. We explore 
both mathematical and musical examples of self-reference, showcasing their 
sometimes mind-bending weirdness. 
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Having seen how mathematics helps explain the choice of notes and their 
lengths, we will turn to the ways composers use mathematics in writing 
compositions. Although modern composers, notably the 12-tone composers 
of the early 20th century and later avant-garde composers, explicitly used 
mathematical ideas from probability and other fields, musicians back to 
the Baroque period employed mathematical principles when manipulating 
melodies and harmonies. Understanding the probability and group theory 
behind their methods—many details of which were not written down by 
mathematicians until long after they were used in music—will help us 
understand the mathematical structures hidden in the music we hear every day.

After a composer completes a piece and an ensemble performs it, the final 
product is most often delivered to our ears digitally, via an MP3 file or a CD. 
In either case, mathematics plays a crucial role behind the scenes to make 
the listening experience an enjoyable one. In the case of MP3 (and similar 
technologies), the harmonic analysis of overtones helps in the compression of 
files that would otherwise require more lengthy downloads or larger drives. 
In the case of CDs and DVDs, error-correcting codes and other mathematical 
techniques are used not only to detect the errors that are unavoidable in the 
disc-writing process but actually to correct those errors! Incredibly, these 
mathematical algorithms ensure that the more than 50,000 errors that occur 
on a typical audio CD will be corrected before sound comes out of your stereo 
system! In fact, the digitization of music (and musical scores) allows us to 
accomplish tasks hardly imaginable a generation ago, including fixing out-of-
tune notes on the fly and finding a composition knowing only a short melody.

In the final stop on our tour of the musical experience, we will delve into the 
available evidence for how the brain processes both mathematics and music. 
By examining similarities between the two subjects on many different 
levels, from infant development, to how the brain works with patterns, to the 
level of abstraction, to creativity and beauty, we will arrive at the ultimate 
connection between the subjects: that similar patterns of thought underlie 
both mathematics and music.

Throughout our journey, from the origins of single notes to the mental 
processing of music, the mathematical concepts that help explain musical 
phenomena will be illustrated with examples, primarily on the violin. Not 
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only is the violin one of the most popular instruments in the orchestra, but 
it provides a way to visualize much of the mathematics in this course. The 
shifting in each lecture between interesting mathematics and engaging 
musical examples enables each subject to illuminate the other, helping 
us gain a better understanding of, and appreciation for, both mathematics  
and music. ■
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Overtones—Symphony in a Single Note
Lecture 1

This course is structured around a single central question: How can 
mathematics help us understand the musical experience? Mathematics 
and music might seem to be separate topics, but our philosophy in 

this course is to show the connections between these two beautiful subjects. 
When we see mathematics, we will illustrate the math with musical 
examples. When we hear music, we will explain the underlying mathematics 
to help us understand the music better.

Frequency and Wavelength
•	 Instruments look different, but they all have something in common. 

When an instrument plays, something is vibrating, which causes 
a wave of pressure changes that travels through the air and 
reaches your ear. Mathematicians have studied vibrating objects 
extensively, and their work helps us understand the sounds produced  
by instruments.

•	 When we play a note, such as an A on a violin (440 A), what 
frequencies are produced? In this case, the answer is 440 hertz 
(Hz). The higher the frequency, the more times the waves are 
vibrating per second. For 440 Hz, the waves are vibrating 440 times 
per second.

•	 When we look at the spectrum for this note, we see that the peaks 
have different heights. The spectrum shows us that the string 
vibrates at many different frequencies, all at the same time. If we 
play a note at 100 Hz, we see frequencies of 100, 200, 300, and 
so on—the higher the frequency, the higher the pitch. The lowest 
frequency produced is called the “fundamental.”

•	 In addition to frequency, we can also look at wavelength. Here, 
we’re measuring from the peak of one trough to the peak of another. 
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o Sounds are actually pressure waves. Parts of the air are 
compacted, and parts of the air are rarefied. A 100-Hz note has 
a wavelength of about 3.4 meters. 

o If we measure the wavelength of the overtones instead of 
the frequency, we get, in this example, 3.4 meters for the 
fundamental, 1.7 meters, 1.13 meters, and 85 centimeters. If 
we take that largest one, 3.4, as our measuring stick, we see 
that those are in a ratio of 1, 1/2, 1/3, 1/4, 1/5, 1/6, and so on.

•	 The frequencies and wavelengths satisfy a key equation: The 
frequency multiplied by the wavelength is a constant, the speed  
of sound. 

•	 If we play a 440 A, what frequencies are produced? We can see the 
answer in the spectrum: 440 Hz, 880 Hz, 1320 Hz. These are all 
multiples of 440. The fundamental frequency is 440, and then we 
just add that repeatedly. Mathematically, we talk about this as an 
arithmetic sequence. The important thing for us is that it’s additive. 
To get from one to the next, we simply add the fundamental 
frequency each time.

•	 A string vibrates at many different frequencies. Listening to a 
single string vibrating is like sitting in front of an orchestra of the 
jump ropes we’ve used here for illustration, each one vibrating in a 
particular mode. 

•	 Note that there’s a difference between pitch and frequency. Pitch is 
the perceived highness or lowness of a note, whereas frequency is 
this physical vibrating.

•	 The mathematical term “harmonic sequence” comes from the 
harmonics you can play on a string. The relative frequency of each 
overtone is in a ratio of 1:2, 1:3, 1:4, 1:5, and so on.

•	 Recall that the key equation here was that the frequency multiplied 
by the wavelength gives the speed of sound: fλ = v. If we look at the 
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relative wavelengths versus the relative frequencies, we can see this 
equation working. If we multiply the frequency by 3, we have to 
divide the wavelength by 3 in order for them to multiply and get the 
same velocity, the speed of sound.

Differential Equations
•	 We need calculus (the study of change) in order to understand 

this, but we also need differential equations, which use calculus 
to predict the future. In particular, we need partial differential 
equations, which have more than one variable.

•	 There are three steps to understanding and using any mathematical 
model to predict the future. 
	○ The first step is to create a model: to use variables, talk about 

assumptions, and mathematize the situation. 

	○ The second step is to connect the variables, for which we  
use equations. 

	○ Finally, we have to solve the system. We have to use the 
equations to predict what will happen in the future, to get a 
function that represents what will happen for all time.

•	 If we do this well, then the result the model predicts closely follows 
what we see in reality. If we don’t do it well, then the prediction 
doesn’t closely match reality. We have to go back to step 1, change 
the variables, change the assumptions, tweak the model, and go 
through the whole process again.

•	 To construct a mathematical model for a vibrating string, we let x 
represent the distance along the string at the bridge (assume L = 1 
unit), t represents time, T represents the tension on the string, and ρ 
stands for the mass per unit length (weight). The height of the string 
at position x and time t is u(x,t).

•	 The next step is to connect the variables using equations. In this 
case, we will use Newton’s equation F = ma. When we translate 
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that to this particular situation, we get that the tension (T) multiplied 
by the second partial of u with respect to x is equal to the weight (ρ) 
multiplied by the second partial with respect to t. In mathematics, 
this is called a “wave equation.”

•	 Taking into account boundary conditions and initial conditions, the 
next step is to solve the partial differential equation, and when we 
do so, we predict the future. In this case, given any initial condition 
F that we deform the string into, the mathematics will tell us what’s 
going to happen for t > 0 for all time in the future.

•	 The power of differential equations is this: If you can model the 
forces that act on a system, the mathematics predicts what will 
happen in the future.

•	 The mathematics is telling us that the string is vibrating in a series 
of modes. Mathematically, we’re getting a sum of sine waves; 
musically, we’re getting a series of overtones.

The Universality of Mathematics
•	 The beauty of mathematics is that it’s universal. Once we have a 

model for a situation in one field, it can be used in many different 
fields. In our area of interest, wind and brass instruments involve 
vibrating air columns, but the mathematics of the situation is almost 
identical to that for vibrating strings.

•	 Like a string, a tube of air resonates in particular modes, and what 
we hear is a combination of those modes—literally, a sum of those 
modes. If we swing a simple plastic tube, we hear a particular 
sequence of vibrating modes, perhaps 400 Hz, 600 Hz, 800 Hz, and 
so on. It’s another arithmetic series.

•	 As we listen to an A played on a series of instruments, the spectrum 
shows us that we hear a sequence of different frequencies:  
the overtones.
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	○ Notice that each of these instruments produces more than one 
frequency. There is a fundamental, and then there are many 
other peaks in the spectrum. 

	○ Each instrument has essentially the same patterns of 
frequencies, which again, are additive. They are just 
multiples of the fundamental. The ratios are 1:2, 1:3, 1:4—the  
natural numbers.

	○ If we’re looking at wavelengths, we get the reciprocals of 
those: 1, 1/2, 1/3, 1/4, and so on. The mathematics we use—
differential equations—correctly predicts that we will get those 
particular sequences of numbers.

Visualizing Modes
•	 To get a different set of overtones, we have to move from one-

dimensional objects—strings, vibrating columns of air—to 
something that’s two-dimensional. We are essentially moving from 
the strings, brass, and winds in an orchestra to the percussion.

•	 When we play a drum head, we get different vibrating modes, just 
as we do on a string. But when we look at the spectrum of a timpani, 
we can see that it doesn’t have the same structure as that of the other 
instruments. There isn’t one fundamental with overtones above it. 
The peaks in the spectrum of the timpani aren’t nearly as clear.

•	 We can use a frequency generator to see the different modes in 
which the timpani can vibrate.
o Notice that when we change the frequency, we’re not 

changing the amplitude, although the volume seems to change 
dramatically. That’s not because the drum is vibrating in greater 
and greater amounts. Instead, it’s simply because this particular 
drum has particular resonances.

o Note, too, that when you hit a drum head, you don’t hit the 
center (the nodal line), because the drum head doesn’t move 
there. Instead, you hit near the side, away from the nodal lines.
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•	 Once we understand the overtone sequence of an instrument, we 
can then start playing the instrument. We can vary the frequency 
of the fundamental. If we couldn’t do that, music would be very 
uninteresting; it would have only a single note. 

The Frequency of the Fundamental
•	 How does the frequency of the fundamental depend on such things 

as, in the case of a violin, the weight of the string, the tension, and 
the length?

•	 Qualitatively, we can say that if the weight of the string increases, 
the vibrations will slow down. We also know that if the tension 
increases, the speed of the vibrations will increase. And if the length 
increases, the vibrations will slow down.

•	 Differential equations give us a more quantitative answer. The 

formula here is:                  .

•	 In this formula, L is the length of the string, T is the tension, and ρ 
is the weight. We can see this formula at work. If we increase the 
tension on the string, the pitch goes up. That’s because the tension, 
T, is in the numerator of that fraction. When T increases, the square 
root also increases, and the frequency goes up. We can also see the 
formula at work with the weight and length.

•	 How does the fundamental frequency depend on T, ρ, and L? To 
answer that, we do exactly what we did before: go through the three 
steps to make a mathematical model and then solve it. Once we’ve 
solved the equation, we can create melodies in predictable ways. 

•	 As you listen to “Twinkle, Twinkle, Little Star,” think about how 
each note is made of many different frequencies—the overtones—
and how we’re creating a melody by changing the frequency of 
the fundamental. The way to do that on a violin is by changing the 
length and the weight of the strings.

f
L
T

=
1
2 ρ
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Changing Pitches
•	 To change the pitch on a vibrating column of air, we change the 

length of the column. We see this in a demonstration with the 
“Wonder Pipe 4000,” an 
instrument consisting of 
a PVC pipe and a bucket 
of water. As we move the 
pipe lower into the water, 
the column of air that is 
vibrating gets shorter. If 
we raise the pipe almost 
out of the water, we get a 
much higher frequency.

•	 Mathematics predicts this 
difference between a pipe 
in water and a pipe out 
of water. 
o The mathematics of a vibrating column of air, for instance, a 

flute, is similar to the mathematics of a vibrating string. When 
we looked at a string, u(x,t) represented the height of the string 
at position x and time t. When we look at a column of air, 
u(x,t) represents the difference in atmospheric pressure in this 
particular tube at position x and time t. 

o When we put this into equations, what we get is another version 
of the wave equation: c2 (c = speed of sound) multiplied by 
the second partial of u with respect to x is equal to the second 
partial of u with respect to t. This comes from fluid dynamics.

•	 For a flute, the column of air is open at both ends; this fact tells us 
that the boundary conditions are 0 at both ends. 
o The key difference between a violin and a flute is that when a 

violin vibrates, there’s a sort of middleman in the process. The 
string vibrates, and that vibrates the air.

The vibrato motion on a violin slightly 
changes the length of the string and 
lends a wavering sound to the pitch.

©
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o In contrast, when a flute is vibrating, there is no middleman. 
The air within the instrument is vibrating. The length of the 
instrument determines the wavelength of the sound.

o We can predict what the wavelength of sound will be from a 
flute exactly as we did for a violin. 

•	 The lowest note on a clarinet is something around 160 Hz. 
That’s much lower than the 240 Hz on a flute. To understand 
why clarinets play so much lower, the key is to understand the  
boundary conditions.
o A flute, remember, is open to the air at both ends. There is 

atmospheric pressure at the end and at the mouthpiece. 

o In contrast, a clarinet is open at the bottom, but it’s closed at 
the top. The clarinet player puts the reed entirely in his or her 
mouth. Pressure can build up against the reed, and that changes 
the mathematics of the situation. 

o Rather than having boundary conditions of 0 at both ends, 
we have 0 at the bell end—there is no pressure change—but 
at the closed end, there is maximum pressure change. There’s 
nowhere for the air to go. It can’t vibrate because it comes up 
against the edge of the reed. 

o The mathematics tells us that one end of the clarinet is like 
one end of the jump rope: It’s held fixed. The other end of the 
clarinet has a place where the jump rope has to be flat. The 
mouthpiece, in other words, is located in the middle of the 
loop of rope when we think about this jump rope. We can 
use that to figure out the lowest wavelength that a clarinet  
can produce.

o A clarinet is about 0.6 meters long. The lowest frequency 
produced by the clarinet should be, according to this 
mathematical model, the velocity, 340 meters per second, 
divided by 4 times the length. That gives us 2.4 meters. When 
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we do the calculation, we get that the lowest frequency a 
clarinet should be able to produce is about 140 Hz, which is 
not far off.

•	 This same mathematics also explains the Wonder Pipe 4000. We 
realize that a flute cannot play very low because it’s an open tube 
at both ends. A clarinet can play lower because it’s closed on one 
end. When we put the Wonder Pipe down in the water, we’re 
representing the closed mouthpiece, and we get a lower pitch. When 
it’s out of the water, it acts like a flute and has a higher pitch.

•	 As we’ve seen in this lecture, a note played on almost any 
instrument includes many different pitches, different frequencies, 
called overtones or harmonics. For most instruments, those 
overtones are related to a harmonic series. In terms of wavelengths, 
that’s 1, 1/2, 1/3, 1/4. In terms of frequencies, those are 1, 2, 3, 4, 
5, and 6. We make different pitches by changing the vibrations in 
mathematically predictable ways.

Benson, Music: A Mathematical Offering, chapters 1, 3 (for the 
mathematically advanced).

Fletcher and Rossing, The Physics of Musical Instruments (for those with a 
significant physics background).

Harkleroad, The Math behind the Music, chapter 2.

Loy, Musimathics, vol. 1, chapters 1–2, 4–5, 7–8; vol. 2, chapter 7.

University of New South Wales, http://www.phys.unsw.edu.au/music/.

Wright, Mathematics and Music.

    Suggested Reading
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1. What is the overtone series of a vibrating object? 

2. How is mathematics used to predict the overtone series for a  
vibrating object?

    Questions to Consider
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Timbre—Why Each Instrument Sounds Different
Lecture 2

In the first lecture, we learned that a note played on any instrument 
includes many different frequencies, called overtones or harmonics. For 
many instruments, these overtones are related to the harmonic sequence. 

In wavelengths, that’s 1, 1/2, 1/3, 1/4, 1/5, 1/6; in frequencies, those are 
the ratios 1:2, 1:3, 1:4, and so on. We make different pitches on different 
instruments by changing the vibrations in mathematically predictable ways, 
whether it’s shortening the string on a violin or putting holes in a flute to 
shorten the length of a vibrating tube of air. We know that if we play the 
same note on a flute and a violin at the same loudness, we would still know 
the difference between the two instruments. The reason we do is the subject 
of this lecture: timbre.

Defining Timbre
•	 According to the Grove Dictionary of Music, timbre is: “A term 

describing the tonal quality of a sound. A clarinet and an oboe 
sounding the same note at the same loudness are said to produce 
different timbres. Timbre is a more complex attribute than pitch 
or loudness, which can each be represented by a one-dimensional 
scale (high-low for pitch, or loud-soft for loudness). … Timbre is 
defined as the frequency spectrum of a sound.”

•	 A negative definition of timbre comes from the American National 
Standards Institute: “everything that is not loudness, pitch, or 
spatial perception.” Spatial perception means that you can tell 
where a sound is coming from. If you hear a sound on your left 
side, how do you know it’s on your left side? Your brain does an 
amazing calculation to give you this information. 

•	 The mathematics we’ll look at in this lecture is the Fourier 
transform, which breaks a complicated wave into simpler sine 
and cosine waves. The human ear does this sort of complicated 
mathematics in differentiating a flute from a violin.
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Using Mathematics to Understand Timbre
•	 To begin, let’s look at the sine wave (pressure variations) at 440 Hz. 

o The horizontal axis is time; the scale from one peak to the next 
is 1/440 seconds. The vertical axis is pressure. The 0 in the 
middle is atmospheric or ambient pressure. 

o Where we have a peak, that’s where we have higher pressure, 
where the air molecules are compressed. Where we have a 
trough, that’s below ambient pressure; the air molecules are 
more spread apart, and that’s called “rarefaction.”

•	 The Grove definition of timbre was the “frequency spectrum of 
a sound.” What is the spectrum? It’s the answer to the following 
question: How would you make this wave by adding up pure sine 
waves of different frequencies? In other words, the spectrum tells 
you what the “recipe” is to cook up a particular sound—a particular 
wave—using sine waves as the ingredients.

•	 What does it mean to add up sine waves? It turns out that sound 
waves add just like functions. To add a 440-Hz sine wave and a 
500-Hz sine wave, at every point in time, we add the pressure 
values from the two waves. If they’re both high, then when we add 
them, we get something even bigger. If one isn’t a peak and one 
isn’t a valley, then they cancel each other out, and we get something 
near 0.

•	 We can also do this process in reverse. What sine waves do we add 
to get a 440-Hz sawtooth wave?
o Given the fact that it’s a 400-Hz sawtooth wave, we know we 

need to add up sines that have the same period. In other words, 
we need sine functions that repeat every 1/400 seconds. That 
gives us some idea of which sine waves we should take. In 
fact, if f is the frequency, then the period is 1/f, and we should 
take sin(2kπ/ft) for k = 1, 2, 3, and so on. All of those have the 
correct period. 
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o We might try to add up and get a sawtooth wave s(x) by taking 
sin(2π/ft) + sin(4π/ft) + sin(6π/ft). We might think about taking 
different amounts of each, and those amounts are a1, a2, a3, and 
so on. Now, we’ve reduced the problem to a different question: 
How much of each ingredient should we take? What should ak 
be for k = 1, 2, 3… ?

o Solving for the amount of each ingredient is a mathematical 
trick called “orthogonality.” It turns out that if we take the 
sin2jπt sin2kπt and integrate (that is, sum all the ingredients) 
from 0 to 1, we always get 0 unless j and k are the same number. 
Mathematicians say that those two functions, the sin(jπt) and 
sin(kπt), are orthogonal, which is a version of perpendicular. 

o We can actually think of those functions as being vectors in 
some abstract function space, and those particular vectors 
are perpendicular. On the other hand, if j = k, then those two 
vectors are parallel.

The Fourier Series
•	 This is all the work of Joseph Fourier, a mathematician born in 

1768. He was studying various problems when he came up with 
these Fourier series. He was looking for a recipe to write any 
periodic function as 
the sum of sines and 
cosines. Fourier did 
this work in the context 
of studying heat flow 
and metal plates.

•	 His work is used to 
solve a wide variety 
of problems in 
differential equations, 
anything from signal 
processing to quantum 
mechanics. Most 

The mathematics of the Fourier transform 
is key to virtually all signal analysis, 
including am-Fm transmission.
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problems involving periodic functions use Fourier series or  
Fourier transforms.

•	 Let’s return to the sawtooth wave problem. We figured out that 
the ingredients for the sawtooth wave were probably certain sine 
functions. Interestingly, unlike regular recipes in the kitchen, this 
recipe looks like it goes on forever. It’s an infinite series. Now 
we’re trying to answer the question: How much of each one of the 
ingredients should we take?

•	 That’s where we turned to the orthogonality trick, and the answer 
we got from that is that we should take the first sine wave with 
amount 1, the next one with amount 1/2, the next one with amount 
1/3, and so on. We’ve seen that before. That’s actually a copy of the 
harmonic series! 

•	 We can check this answer both graphically and with sound. As we 
add more terms (more ingredients in the correct proportions), the 
function looks and sounds more like the sawtooth wave.

•	 So far, we’ve talked about Fourier sine series, for which there are 
two important generalizations. 
o The first is that we could use sines and cosines but stay with 

even multiples of π for our frequencies: π, 2π, 3π. If we use 
sines and cosines with those as the argument, those are called 
Fourier series in general. 

o The second generalization we could make is to allow any 
frequency, not just integer multiples of π. If we do that, 
we get the mathematics called the Fourier transform. In all 
of these cases, the point is to break down a complicated  
periodic function into simple sine waves that we understand 
much better.

The Fourier Transform
•	 The mathematics of the Fourier transform is incredibly advanced. 

But for this lecture, what we need to know is that the Fourier 
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transform takes a complicated wave and breaks it down into 
component sine waves of different frequencies. We call that  
the spectrum. 

•	 It’s also important to know that this is reversible. We can go from 
the wave form to the spectrum and back. Mathematicians call that 
going from the function side to the Fourier transform side and doing 
the inverse Fourier transform to get back. That’s what our ears do: 
a Fourier transform.

Understanding Instrument Sounds
•	 Let’s return to the simple sine wave A at 440 Hz. Again, peak to 

peak, we see a gap of 1/440 seconds. The spectrum of this, if we 
take the Fourier transform, shows a single peak at 440 Hz. In theory, 
it’s a single infinitely tall point. It’s a delta function. In practice, 
the computational issues smooth this out, so you see a peak sort of 
smoothing out to the sides.

•	 Does this sort of pure sine wave ever occur? Does anything vibrate 
in just a sine wave? 
o It turns out that some bird calls, such as that of a black-capped 

chickadee, are very close. Its wave form looks remarkably like 
a simple sine wave. Its spectrum is nearly a single peak at 3850 
Hz. All of the other overtones are much smaller. 

o It’s important to note that the vertical scale of the spectrum 
is logarithmic. Each line is 10 decibels, and the scale is 
multiplicative. When something is three lines below (30 
decibels below), that’s actually 10 × 10 × 10 less. It’s 1/1000 
as powerful. The chickadee is singing almost a pure sine wave. 
All the other frequencies are much softer.

•	 Let’s return to the spectrum of the sawtooth wave. We already 
figured out the recipe for this wave. When we look at its spectrum, 
it shows us visually the recipe we use to get it; we take each of the 
frequencies in smaller and smaller proportions. That’s the harmonic 
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series that we saw in our recipe: 1, 1/2, 1/3, 1/4, and so on. This 
confirms our idea of the correct recipe for the sawtooth wave.

•	 When we look at the wave form for an A on the violin, we see that 
it repeats, and the gaps are, again, 1/440 seconds. Its spectrum has 
peaks at multiples of 440. Here, we’re concentrating on the heights 
of those peaks: How much of each harmonic are we hearing? The 
second harmonic, the one that’s at 880 Hz, is actually 20 decibels 
below the fundamental. That means it’s 100 times lower. On the 
other hand, the fifth harmonic is almost as loud as the fundamental.

•	 The spectrum of an A on a trumpet also shows peaks at multiples of 
440, but the heights of those peaks form a different pattern from the 
spectrum of a violin. The clarinet spectrum shows that all the odd 
overtones of the clarinet A are much louder than the even ones. This 
relates to the fact that one end of the tube is closed in a clarinet.

•	 Why should we care about the spectrum or the Fourier transform? 
It’s how we distinguish different instruments and different voices 
from different timbres. It has to do with the heights of the various 
spectrum peaks. How our ears do this has a fascinating mathematical 
component to it.

Resonant Frequency
•	 Deep inside the ear, on the other side of the ear drum, is an 

organ called the cochlea. It’s conical-shaped—different sizes at  
different places. That means that different places resonate at 
different frequencies. 

•	 If a particular sound comes in—if a particular sine wave comes 
in—there is some place in the cochlea where that resonates very 
loudly. The basilar membrane is inside the cochlea, and it picks up 
those vibrations and sends that message to your brain. In this way, 
your ear is figuring out a recipe for that sound.

•	 When an A is played on a violin, the sound wave hits your ear. 
Each overtone on the spectrum—each ingredient in our recipe—
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resonates the cochlea in a different place and with a different 
amplitude, producing a different force on the basilar membrane. 
The ear then does exactly what the Fourier transform does. It 
separates a complicated wave into simple sine functions and sends 
those to your brain.

•	 Your brain has stored-up patterns of spectra from various 
instruments. Your brain knows that a spectrum of a particular pattern 
is a violin or a clarinet. The brain then does pattern matching.

•	 The caveat to all this is that the spectrum changes over time. 
The spectrum of the very beginning of the note (the “attack”) 
is crucial. If we remove the attack electronically, it becomes 
difficult to distinguish the instrument. The timbre of the attack is  
particularly important.

•	 We hear four different ways of playing A 440 Hz on a violin: 
pizzicato, open A, A played on the G string, and ponticello. 
Looking at the spectra of these four sounds after the attack reveals 
differences. For example, the pizzicato is all about the lowest 
overtones. The attack would have higher overtones, but they 
die out fairly quickly. The open A has a rich set of overtones in  
most ranges.

Harmonics
•	 String harmonics are different from the harmonics that describe the 

modes of vibrations, the overtones. The idea here is that we lightly 
stop the string from vibrating at a particular point. If we do this 
in the fundamental mode, where the whole string is vibrating, the 
string will be completely disrupted.

•	 If we stop the string in the middle of the second harmonic, the first 
overtone, there’s no disruption. The string can continue to vibrate 
on each side (each loop) even if the string is lightly stopped in the 
middle. Notice that all the even modes have nodes in the middle, 
which would mean no disruption. All of the odd nodes would be 
disrupted because they are moving in the middle.
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•	 The spectrum of an A that is lightly stopped in the middle acts 
exactly like the mathematical description. The harmonic gives us 
only the even overtones; all of the odd ones are damped out. Notice, 
too, that this changes the fundamental. The lowest frequency is no 
longer 440 Hz; it’s now 880 Hz, double the fundamental frequency 
of the original.

•	 If we stop the string two-thirds of the way up, we would hear only 
the modes where there’s a node at that place. The fundamental 
doesn’t have a node there, nor does the next mode. In fact, only the 
multiples of 3 will have nodes at two-thirds. We should hear only 
every third overtone.
o When we do this, the timbre and the fundamental change. The 

timbre changes because we eliminate some of the overtones. 
The fundamental changes because the lowest frequency we 
hear is three times the original fundamental’s frequency.

o Stopping the string one-third of the way up sounds almost 
exactly the same as stopping it two-thirds of the way, again, 
because we’re looking at only the multiples of 3 in the original 
overtone series of the A. 

Pianos and the Seventh Harmonic
•	 If you’re designing a piano, you have a choice about where on 

the string the hammer should hit. Different choices will give you 
different timbres.

•	 Remember that when we were looking at the overtones, we looked 
at the seventh of those. The seventh harmonic was not a note that 
was on our 12-tone scale. When we’re making a piano, we can 
choose to put the hammer in a place so that the seventh overtone is 
less audible.

•	 Using partial differential equations, we can actually predict how 
much of each overtone we will hear for a given hammer position. 
To avoid the seventh harmonic, we position the hammer exactly 
one-seventh of the way up the string.
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•	 To understand this, think back to the jump rope. The seventh 
harmonic has seven loops and will have a node one-seventh of the 
way up the string. If we hit it there, we will disrupt that mode, so 
we won’t hear any of the seventh harmonic. This is actually the way 
that pianos are made.

How Composers Use Timbres
•	 The primary way that composers use timbre is by choosing different 

instruments for different parts. Think about the piece Peter and 
the Wolf by Prokofiev. The bassoon represents the grandfather, the 
oboe represents the duck, and so on. These are different timbres for 
different instruments because of the storyline.

•	 A more subtle way of doing this is not by having different 
instruments play different things because of the difference in 
timbre, but by having a single instrument play in different ways—
plucking, bowing, or playing harmonics. 

•	 This takes us back to the opening music for this lecture, Bach’s 
“Air on the G String” from his Orchestra Suite No. 3 in D Major. A 
German violinist, August Wilhelm, adapted this piece just for violin 
and piano. He changed the key to C, brought it down an octave, 
and had the violinists play entirely on the G string, which gives the 
music a darker quality. We perceive the lower, darker overtones via 
a Fourier transform.

Benson, Music: A Mathematical Offering, chapter 2 (for the mathematically 
advanced).

Fletcher and Rossing, The Physics of Musical Instruments.

Harkleroad, The Math behind the Music.

Loy, Musimathics, vol. 1, chapters 2, 6, 8; vol. 2, chapters 3, 6.

University of New South Wales, http://www.phys.unsw.edu.au/music/.

    Suggested Reading
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Wright, Mathematics and Music, chapter 10 (an excellent, less 
mathematically technical discussion).

1. How is the timbre of a note related to the spectrum, overtone series, and 
Fourier transform?

2. In what sense does the ear perform a Fourier transform before sending 
information about a note on to the brain?

    Questions to Consider
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Pitch and auditory Illusions
Lecture 3

Thus far, we’ve learned that a note on almost any instrument produces 
many different frequencies, called overtones or harmonics. We’ve 
also learned that how much each overtone is produced is called 

timbre. And we’ve learned to break down a wave form into its constituent 
frequencies, figuring out what recipe goes with a particular sound. The 
mathematics of that is the Fourier transform. In this lecture, we will see how 
these ideas lead to our brains being tricked with auditory illusions. We’ll also 
learn why pitch is not as simple as a low-to-high continuum. 

Defining Auditory Illusions
•	 An auditory illusion is similar to an optical illusion, but rather than 

a visual stimulus, it’s a sound that tricks the brain.

•	 Consider a male voice versus a female voice on a cell phone. A 
man’s voice vibrates at around 100 Hz; a woman’s voice is much 
higher, perhaps 350 Hz. But the speaker on a cell phone has a range 
of only 350 Hz to 4000 Hz. Your brain thinks you hear the low 
frequencies of a male voice, but the speaker on the cell phone can’t 
produce frequencies that low. It misses the fundamental in the first 
couple of overtones.

•	 Why is your brain tricked? Let’s go through exactly what happens 
when you hear a male voice on a cell phone.
o Vocal cords, like all the other one-dimensional vibrators we’ve 

discussed, vibrate at a particular sequence of overtones. When 
you hear a male voice at 100 Hz, his vocal cords are also 
vibrating at 200 Hz, 300 Hz, and so on. When he speaks into 
his phone, those vibrations are digitally encoded and sent as 0s 
and 1s, and the wave form is decoded by your phone.

o At this point, you’re still not missing the fundamental on the 
first few overtones. The entire signal is present, but when it’s 
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played back on your phone’s speaker, you lose some of the 
lower overtones. 

o Here’s where your brain gets involved. Your ear, first of all, 
does the Fourier transform and sends the spectrum to the brain. 
The brain recognizes that if you were hearing a 400-Hz sound, 
the overtones would be 800, 1200, 1600, and so on. But the 
sound you’re hearing also has 500, 600, 700, 900, and so on. In 
fact, three-fourths of the sounds that are coming into your brain 
don’t fit the pattern of a 400-Hz sound.

o The pattern matches closer to what your brain knows as a 100-
Hz sound. All that’s missing are the first three overtones, 100, 
200, and 300.

o In your brain, the idea of a low G means a particular set of 
neurons all firing at the same time. When you hear a 100-Hz 
note, there’s actually a neuron firing 100 times per second. When 
there’s something vibrating at 200 times per second, there’s 
another neuron that’s firing at exactly 200 times per second. 
Thus, the idea of a low G is simply a set of neurons firing at 
the same time. When you remove just three of those, you’re still 
firing the same set of neurons. To your brain, the pitch low G is 
just a particular pattern of neurons firing together. 

o We need to remember here the difference between pitch and 
frequency. Both relate to how high or how low a note is. 
But pitch is the perceptual attribute—the “psychoacoustical 
attribute” of a sound—whereas frequency is the physical 
attribute of the wave form. 

o The missing fundamental tells us that pitch and frequency are 
not the same. When a male speaks at 100 Hz, the pitch is a low 
G, but the lowest frequency that comes through on the phone 
is 400 Hz. 
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Musical Notation
•	 On a piano keyboard, the higher pitches are to the right and the 

lower pitches are to the left. The white keys are called A, B, C, D, 
up through G, and then that pattern repeats. The reference place on 
a piano is A, 440 Hz. The black keys are the sharps and the flats, the 
incidentals. For instance, the black key between A and B is A-sharp 
and B-flat. 

•	 The interval between two notes is the distance in pitch from the 
lower one to the higher one. The smallest interval on a piano is to 
go from one key to the next, black or white, or from white to white. 
o Going from A to A-sharp would be a half-step; going from 

G-flat to G would be a half-step; and going between two white 
keys, B and C, is also a half-step. 

o Going from one key to the next of the same name is called an 
octave. Thus, going from an A to another A or going from a 
D-sharp to the next sharp is an octave. 

•	 If we need to distinguish As, we number them: A0 is the lowest A 
on the piano, followed by A1, A2, A3. A4 is at 440 Hz. There’s a bit 
of an oddity about this: You increase the number not at A but at C. 
Thus, the bottommost notes are A0, B0, and C1, and if you go up to 
440, that’s A4 and then B4 and C5. 

•	 A sharp symbol means to go up one half-step. That really means to 
go up one key on the piano, and a flat symbol means to go down 
one. Thus, B-sharp is actually the same thing as a C; an F-flat is 
the same thing as an E. A B-double-sharp is the same thing as a 
C-sharp, and an F-double-flat is the same thing as an E-flat, at least 
on a piano. 

•	 An octave is made up of 12 half-steps. If you start at one key and 
go up 12 keys, you’ll get to another key of the same name. How 
do these notes correspond to frequencies? For example, what are 
the frequencies of the As in the octaves above and below 440 Hz? 
Starting at 440 Hz, the next A is at 880, and the next one is at 1760. 
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We have to double the frequency every time we go up an octave. To 
go down from an A at 440, we halve it, so we get 220, 110, and 55. 

•	 The key observation here is that octaves are multiplicative. 
Remember that overtones are additive. This difference between 
the multiplicative system of intervals and an additive system  
of overtones has numerous implications, some of which are  
very surprising. 
o Suppose a piano key sounds at some fundamental frequency 

x. What are the frequencies of the octaves above and below 
x? For the octaves above, the answer would be 2x, 4x, 8x, and 
16x. For the octaves below, the answer would be 1/2x, 1/4x, 
and 1/8x. 

o In general, if we want to go n octaves away from x, the formula 
would be 2nx, and that works for both positive and negative n. 

o What about the overtones of x? Those are the multiples 2x, 3x, 
4x, 5x, 6x, and 7x. In general, the end-harmonic above x will 
be nx. Note that this works only for positive n. There are no 
harmonics below the fundamental, at least in natural sounds. 
To go from one to the next, we are just adding x again. The 
general formula here is n × x, and it’s multiplication because 
multiplication is just repeated addition. 

Comparing Overtones and Octaves
•	 Let’s compare overtones and octaves played at frequency x. We 

hear the overtones x, 2x, 3x, 4x, 5x. The octaves above that are x, 2x, 
4x, 8x, 16x. All of the octaves are in the overtone series, but not all 
of the notes in the overtone series are octaves.

•	 What about the notes that aren’t octaves? We hear a full G at 200 Hz 
and then we hear each overtone isolated in turn. The fundamental is 
a G3. The first overtone (the second harmonic) at 400 Hz is a G4. 
The third harmonic, now at 600 Hz, is no longer a G; it’s a D5. 
It shouldn’t be surprising that the fourth harmonic at 800 Hz is a 
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G again because we doubled the 400 Hz we just heard. The fifth 
harmonic at 1000 Hz is a B5. 

•	 There are many different representations of musical notes: the sound 
itself, numbers (frequencies), keys on a piano, notes on a staff, and 
peaks on a spectrum. We see these different representations added 
as we listen to the first 10 overtones of F2. 

•	 In all these representations, the octaves fall on the powers of 2, as 
we’ve discussed. Note, too, that the third harmonic is a C. That’s 
the first note that isn’t an F. It’s the first note that isn’t in the octave 
scale, and the C is a fifth above F. In other words, C is the fifth note 
on the F-major scale; that’s how it gets the name “fifth.” 

•	 For our purposes, the two most important intervals are the octave, 
going from one note to the next of the same name, and the fifth, the 
fifth note on the major scale of the lower note. Another way to think 
of a fifth is going up seven half-steps. 

•	 A key mathematical observation is that going up an octave is 
multiplying the frequency by 2. Going down an octave is dividing 
by 2. Going up a fifth is multiplying the frequency by 3/2; therefore, 
going down is dividing by 3/2. We can walk through a numerical 
example with the fundamental 87 Hz.

•	 In general, we see that this works, but there’s an important 
complicating fact here. 
o The first overtone above an F2 is an F3. But the overtone series 

of an F3 is not the same as the overtone series of an F2. 

o The third harmonic above the F2 is C4, but when we play a C4 
on the piano, we hear its overtone series. 

o Each note comes with its own symphony of overtones. If the 
overtones of two notes match up, the result is a pleasant sound, 
what musicians call “consonance.” If the overtones don’t 
match up, the result is an unpleasant sound, “dissonance.” 
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•	 The reason the overtones get closer together as we go up the piano 
keyboard is that the intervals are multiplicative. If we go from one 
octave to the next, we’re multiplying by 2.
o The normal number line has equally spaced points; the 

differences between numbers are the same.

o But on a keyboard, it’s the ratios that are the same, not the 
differences. It’s a logarithmic scale: Every time you go up, 
you’re multiplying, not adding.

Deconstructing the Missing Fundamental
•	 As we said, when the lower overtones are removed, the brain 

reconstructs the fundamental and fools you. We can hear this when 
we progressively remove the 
overtones from a G3. The 
timbre changes, but because 
of the missing-fundamental 
illusion, musicians will agree 
that the fundamental stays  
at G3.

•	 What happens if we add 
overtones? We get a bigger 
and more complete picture 
of the sound, and gradually, 
we start to actually hear  
the fundamental.

•	 Organ makers use this auditory 
illusion. The lowest note 
needed in organ music most 
of the time is incredibly low; 
it’s at 16.4 Hz. To produce a 
note that low requires a 32-
foot pipe, which is too large 
for many churches. The solution is to use the missing-fundamental 
illusion to make people think the 32-foot pipe is present. This is 

The lowest note produced in most 
organ music is at 16.4 Hz, which 
requires a 32-foot pipe.
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done by adding smaller pipes with higher frequencies to give the 
illusion of a lower frequency. 
o A 32-foot pipe vibrates at 16.4 Hz, which we’ll call x. The 

overtones of a correct 32-foot pipe should be 2x, 3x, 4x, 5x, 6x, 
and so on. Which smaller pipes could we use to simulate that 
32-foot pipe? 

o The idea here is to produce the first and second overtones of 
what would be a 32-foot pipe so that listeners will hear the 
fundamental. What pipe would have a fundamental of 2x? The 
answer is a 16-foot pipe, exactly half the length of the 32-foot 
pipe. The wavelength is half, so the frequency is doubled. 

o However, a 16-foot pipe will produce overtones only at 2x, 
4x, 6x, 8x, 10x, 12x. We are missing 3x, so we need to add 
another pipe with a fundamental of 3x. We’re trying to triple 
the frequency, which means we cut the wavelength by a factor 
of 1/3, and that’s the size pipe we need: a pipe that measures 
10 2/3 feet.

o When we put all the overtones from those two pipes together, 
we’re missing only a few, and that gives the illusion of 
something playing at x Hz.

The Scale Illusion
•	 Let’s begin by listening to the full sound of the scale illusion. If 

you’re like most people, in one ear, you hear the sound go down 
and up in pitch, and in the other ear, it seems to go up and down.

•	 In fact, there were no descending or ascending scales at all. The 
sounds jumped around, but your brain is so used to hearing scales 
that go up and down that it mixed the sound up and decided you 
must be hearing a scale.

•	 Tchaikovsky used this illusion in 1893 in his Sixth Symphony, 
Pathétique. The scale illusion comes in the opening of the last 
movement. The melody is not really present in the first or second 
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violin parts; instead, the melody emerges from both parts (the first 
and second violins) coming together with the scale illusion.

Shepard Tones, Falling Bells, and the Tritone Paradox
•	 Shepard tones are reminiscent of an optical illusion known 

as the Penrose staircase. They always go up but somehow 
manage to get back to where they started. How can we make an 
endlessly rising note? The key is that each note is a symphony of  
different frequencies.
o If you sit down at a piano and play A, A-sharp, B, C, and 

C-sharp, by the time you get to the next A, you will have 
played all 12 notes and gone up exactly one octave.

o Now imagine sitting down at a keyboard that goes infinitely 
low and infinitely high. You play not just one A but every 
single A on the keyboard, and then every single A-sharp, and 
then every single B, C, C-sharp. By the time you get up to A, 
you’re playing the same note you started with because you’re 
playing every single A on the piano. 

o At every stage, you’re going up one half-step, but you manage 
to get back to the beginning. In other words, Shepard tones are 
actually in a circle.

•	 Related to Shepard tones is an illusion called falling bells. These 
are notes that seem to rise, but they don’t come back to where they 
started; they fall over time. The idea is to take Shepard tones, again, 
on an infinite piano, and slowly move the “envelope” of tones 
downward. From one note to the next, the pitch is definitely going 
up, but over time, the envelope drags the pitches lower and lower. 

•	 In the tritone paradox, we hear four pairs of notes. Interestingly, 
people disagree on whether those pairs go from higher notes to 
lower notes or vice versa. 
o A “tritone” is a musical term for a particular interval of six 

half-steps. From A to D-sharp or from C to F-sharp would be 
a tritone. 
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o In this paradox, two Shepard tones are played that are six half-
steps apart. Two notes that are a distance of six half-steps apart 
are across from each other on the circle. 

o If you think the intervals go up, that means you’re thinking that 
you are going one way around the circle. If you think the notes 
are going down, you’re thinking that you are going the other 
way around the circle.

o When you go from playing every A on an infinite piano to 
every D-sharp, you might have gone from every A up to 
D-sharp, or you might have gone from every A down six keys 
to D-sharp. Because it’s every A and then every D-sharp, you 
cannot distinguish between the two. 

o Each note is made up of many different frequencies. You can 
compare two individual frequencies, but once we manufacture 
them and put them into these notes, you cannot compare the 
entire note. 

•	 In Lecture 2, we learned that timbre is more complex than pitch 
because pitch can be represented on a one-dimensional scale of 
low to high. The Shepard tones and other illusions show that 
it’s not that simple. Here, notes are constructed that cannot be 
compared in pitch; neither is really higher or lower than the other. 
Frequency—the physical attribute, not the perceived one—is a one-
dimensional scale, but pitch—the perceived attribute—is much 
more complicated. 

Benson, Music: A Mathematical Offering, chapter 4.

Deutsch, “Diana Deutsch’s Audio Illusions.”

Loy, Musimathics, vol. 1, chapter 6.

    Suggested Reading
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1. How does our knowledge of how the ear works explain the missing-
fundamental illusion?

2. How did Shepard use the fact that we interpret multiple frequencies (in 
a harmonic series) as a single note to create an endlessly rising note?

    Questions to Consider
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How Scales are Constructed
Lecture 4

Vivaldi’s Spring and Lady Meng Jiang are from two very different 
musical traditions, Western and Chinese. But what is it that makes 
them different? Many differences exist between music from 

different cultures, such as instruments, notations, and so on, but one of the 
key differences is that they use different musical scales. They make different 
choices about notes. In this lecture and the next, we’ll look at how the 
harmonic series informs our choice of scales and how we tune those scales.

Defining a Scale
•	 A scale is a collection of notes, increasing or decreasing in pitch. 

For our purposes, we can think about them as covering a range of 
one octave, from one frequency to its double (e.g., from A at 440 
Hz to 880 Hz). 

•	 Remember, an octave is from one key on a piano to the next of the 
same name, 12 half-steps. As we know, the keys on a piano have 
names—A, B, C-sharp—but when we talk about scales, we also 
give them numbers—the fundamental, the second up through the 
seventh, and the octave. 

•	 The number of notes on a scale is key. We talk about the number 
of notes on a scale as being the number of notes before you get to 
the next octave. When you play a scale, you usually start on the 
bottom and go to the next octave, but if you have a seven-note 
scale, a “heptatonic scale,” you actually play eight notes because 
you include the eighth note on the top end.

•	 The piano’s keys are sort of a fixed reference point; the names of 
the keys never change. However, the numbers—the fundamental, 
second, third, and so on—do change. When you’re in the key of C, 
C is where you measure from, and when you’re in the key of G, G 
is where you measure from. 
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•	 When we talk about the key of the scale, we’re not talking about a 
piano key. We’re talking about the lowest note of the scale, usually 
the first. When we talk about the key of some composition, that’s 
the note that’s most important, and pieces tend to start and end on 
that particular note. 

•	 An interval is the distance in pitch between one note and another. 
It’s related to scales; in numbers, the relation is as follows: The 
interval of the fifth is the distance between the fundamental and the 
fifth note on the major scale when starting on the fundamental. 

Constructing Scales
•	 Scales can have different 

moods (bright and happy 
versus darker and sad), 
but one of the things they 
all have in common is 
that they all have the fifth 
and the octave. Those 
are the second and third 
harmonics we hear when 
we’re vibrating just a 
single note or a single 
column of air. Nearly 
every musical tradition 
on earth contains both the 
fifth and octave.

•	 Let’s review what we need to construct scales. 
o We know that objects vibrate in different modes (overtones), 

and we know that the wavelengths of the most common 
overtones are in a ratio of 1/1 to 1/2, 1/3, 1/4. The harmonic 
series and the frequencies are just multiples, 1, 2, 3, 4; those 
are arithmetic series. 

o What we learn from the overtone series is that to go up an 
octave, we multiply frequencies by 2, and to go down an 

One of the key differences between 
Western music and music from other 
cultures is that they use different 
musical scales—they make different 
choices about notes.
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octave, we divide frequencies by 2. We also learned about a 
fifth—seven half-notes on a piano is a fifth—and to go up a 
fifth, we multiply the frequencies by 3/2. To go back down, we 
divide by 3/2. 

•	 Let’s look at a numerical example: How do we go up an octave 
from a 440 A? We multiply by 2 and get 880 Hz. If we start back 
at A and want to go up a fifth, that would be the fifth note on the 
A-major scale, E5. To figure out what the frequency of that is, we 
multiply 440 Hz by 3/2 and get 660 Hz. The octaves and the fifths 
are the key ingredients we need to construct scales.

Choosing Notes on a Scale
•	 Let’s start by building a scale with a 100-Hz note, roughly a G2. The 

next octave is 200 Hz, a G3. We can try building a 5-note scale by 
putting the notes equally spaced between 100 and 200 Hz (i.e., 100, 
120, 140, 160, 180, 200). The resulting scale sounds nonstandard.

•	 Let’s now take this pattern up an octave and go from 200 to 400 
Hz (between a G3 and a G4). Again, our pattern is that we’re going 
up 20 Hz at a time, which means that this scale has 10 notes, not 5. 
These notes sound much closer together in pitch. 

•	 Going 20 Hz at a time from 400 to 800 Hz (from a G4 to a G5), there 
are 20 notes in the octave. This would be strange because it would 
mean that higher voices would have more notes available to them in 
their octaves. In other words, some of the notes for sopranos might 
not exist for the tenors or basses.

•	 The key problem is this: These intervals and octaves have a 
multiplicative structure. We shouldn’t be adding the same number 
each time; we should be multiplying by the same number each time. 
o Sticking to this multiplicative system puts corresponding notes 

in each octave for each voice, and it reduces the problem to 
looking at a single octave.
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o If we can figure out where the notes go in a single octave, we 
can use the multiplicative structure to get the same notes in 
higher octaves, for sopranos, and in lower octaves, for basses.

Just Tuning
•	 For our first attempt to choose scale notes for a single octave, we’ll 

try using the overtone series of the bottom note to determine the 
higher notes. This is called “just tuning.” Let’s find the notes for an 
A-major scale.

•	 We can figure out the overtones and the notes for an A4 at 440 Hz: 
A4, A5, E6, A6, C-sharp7, E7, sharp of an F-sharp7, A7, and B7. The 
problem is that most of those notes are not in the octave we want, 
which is between A4 and A5. 

•	 Instead of working with 440 Hz, let’s talk about relative frequency; 
let’s treat the A4 as 1. We’re looking to get relative frequencies 
between 1 and 2, and to do this, we’re going to go down an octave, 
which is dividing by 2 in frequency. 
o One of the notes we have in the overtone series of the A is an 

E6, but that isn’t the note we want. We actually want an E5, and 
to get from an E6 to an E5, we’re just going down an octave, 
which is dividing by 2. An E6 is the third harmonic above A, so 
it has a frequency three times A; we divide that in half, and we 
get our E5 of 3/2. 

o We can do the same thing with a C-sharp. C-sharp is the fifth 
harmonic, so it’s five times the frequency of A, but it’s two 
octaves too high. We divide by 2 twice, and we get 5/4 for our 
C-sharp.

o We can take as many of the overtones of A as we want and 
bring them down an octave; the result is a just scale.

A Pentatonic Scale
•	 To get a just-tuned pentatonic scale, we have to do only the notes 

we just discussed. 
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o We have an A (the fundamental), and the second one is also 
an A. The third one is an E; that’s a new note. The fourth is an 
A again. The fifth is a C-sharp. The sixth is an E again. The 
seventh is an F-sharp (at least that’s the closest note on our 
scale). Finally, the ninth note, the B, is the fifth note we have. 

o To get a pentatonic just scale, we take harmonics 1 through 
9—because of the duplication, we need all of those first nine 
to get just five notes—and we get those in the right octave by 
dividing by 2. 

•	 The nice thing about this just pentatonic scale is that everything is 
perfectly in tune with the A. The downside of it is that the notes 
are not necessarily in tune with each other. Let’s look at what this 
means; in particular, let’s look at the B versus the F-sharp. 
o In terms of frequency, we arrived at a 495-Hz B. That B has 

its own overtone series, so when we play the B at 495 Hz, we 
also hear its first overtone (its second harmonic) at 990, and 
its second overtone (its third harmonic) at 1485. Roughly, 
those are a B (the fundamental), the octave (B5), and the next 
overtone (F-sharp6). 

o But the F-sharp that we’ve decided on for our scale, the 
F-sharp5, has its own overtone series. The fundamental 
frequency for that F-sharp is 770 Hz, and its first overtone is 
1540, but its first overtone should be an octave above; it should 
be F-sharp6. 

o This is a problem because one of the overtones of the B is an 
F-sharp6 at 1485 Hz, and one of the overtones of the F-sharp is 
an F-sharp6 at 1549 Hz. Those are very different; the two notes 
would produce dissonance. 

•	 Let’s look at this B to F-sharp problem a different way. The F-sharp 
should be the fifth note above B, exactly seven half-steps above B. 
Therefore, it should have a frequency that is 3/2 times the frequency 
of B. That’s what it means to go up a fifth. The frequency of B 
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is 495; multiplying by 3/2, we get 742.5 Hz. That’s very different 
from 770 Hz. 

•	 This tells us that there’s a real problem with tuning in general. We 
can get the B and F-sharp to be perfectly in tune with A, but we 
can’t get them to be perfectly in tune with each other. 

A Heptatonic Scale
•	 To go from a five-note scale to a seven-note scale, the philosophy 

is, again, that we’re building on the overtones of the fixed reference 
point of the A and bringing those back into the correct octave by 
dividing by 2. That way, we’ll get an A-major just heptatonic scale. 

•	 However, the two notes we added when we went from a pentatonic 
to a heptatonic scale are not quite right. The D and the F-sharp can’t 
have come from this process.
o When we look at the harmonics of an A, we’re multiplying by 

n, and for the octaves below that, we’re taking one of those 
and dividing by 2. That tells us that every note we get in this 
process has to have the form n/2k. There’s no way of getting 
4/3 or 5/3 from this process because 4/3 and 5/3 are not of the 
form n/ 2k. 

o The trick that’s used here to get a just heptatonic scale is the 
fact that D does not appear on the overtone series of A, but on 
the overtone series of a D are other As; thus, we can tune the 
Ds so that the overtone series of the D matches up with the A. 

Musical Results of Just Tuning
•	 Great music is built on this philosophy of just tuning. The key 

question to ask to determine whether a musical tradition should use 
just tuning is whether or not modulation (switching keys) is used. 
o If we modulate “Twinkle, Twinkle, Little Star” from A to C, 

it’s still recognizable as the same melody; it just starts on a 
different note.
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o Remember that the key is the bottom note of the scale, and 
it’s the note that a melody returns to. It’s usually the first and 
last note of the melody; switching keys is just starting on a 
different note. 

o If you’re not going to do any transposing and you’re not going 
to play multiple notes at once—only notes played with the 
fundamental—then just tuning is wonderful. 

o But if you want to modulate—if you want to be able to 
switch keys or to play chords with two notes that are not the 
fundamental—then just tuning leads to problems. 

•	 Just tuning is used with the bagpipe in Scottish culture. The bagpipe 
has a drone that is always heard underneath the music. The chanter 
is a recorder-like part that plays the higher notes, one note at a time. 
There’s no problem like the B and F-sharp that we just saw, because 
the chanter simply plays one note at a time; it never plays two of 
those notes. Thus, a bagpipe is properly tuned as just tuned.

•	 Indian music, played with such instruments as the sitar and the tabla, 
also always stays in one key and has a drone that plays a low note 
throughout an entire piece. The melody is then played on top, one 
note at a time above the drone. Each scale is matched to different 
overtones of the fundamental, and different sets of overtones are 
chosen depending on which scale is being used. 

Bootstrapping
•	 A second way to choose notes on a scale is bootstrapping, that 

is, going from one to the next. Here again, we’ll use the overtone 
series 1, 1/2, 1/3, 1/4 and frequencies of 1, 2, 3, 4, 5. 

•	 The first philosophy was to take A as a fixed reference point and 
build on the overtones of A. The second philosophy is to take A 
and use that to get a note, and then to take that as the new reference 
point and get another note, and so on. 
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o The idea is that the overtones of each note should be included 
in the scale. It’s not possible to include all of them, but we’re 
going to try for most audible. 

o The most audible intervals we hear are the octave and the fifth. 
The second harmonic is the octave and the third harmonic 
gives us the fifth, so if we want to use this philosophy, we have 
to include the octave and the fifth. 

•	 We start with A; the third harmonic of an A is an E. E is the fifth 
note on an A-major scale. We then add the third harmonic of the 
E, a B. Once we bring that into the correct octave, we have another 
note. Next, we add the fifth note above B, an F-sharp. Then, 
the third harmonic of the F-sharp is a C-sharp, which gives us a  
pentatonic scale. 

•	 The notes in this pentatonic scale sound consonant, but the problem 
here is that we’ve ended with a C-sharp. The second overtone above 
a C-sharp is a G-sharp, and that’s not on our pentatonic scale. Still, 
a pentatonic scale can be used to produce interesting music.

•	 For example, Chinese music, such as the piece we heard at the 
beginning of this lecture, Lady Meng Jiang, uses a pentatonic scale. 
In China, this piece would be played on a two-stringed instrument 
called an erhu.

•	 A melody in the second movement of Dvořák’s New World 
Symphony is based on a D-flat major pentatonic scale. Dvořák 
chose the English horn to play this melody, the instrument in an 
orchestra whose spectrum is closest to a human voice.

Why Pianos Are Never in Tune
•	 The bottom note on a piano is A0. The idea is that we will start there 

and bootstrap up a fifth repeatedly, tuning the fifths exactly, until 
we reach A7. To go up a fifth, we multiply the frequency by 3/2.
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•	 A7 is seven octaves above A0, and we know that to go up an octave, 
we multiply the frequency by 2. Checking our work, we find that 
the fifths we got were 27.5 × 3/212 and the octaves were 27.5 × 27. 
Obviously, those are not the same numbers.

•	 How should we tune this top A7? Should we put it in tune with all 
the other fifths, or should we put it in tune with the octaves? The 
fact that we can’t do both explains why no piano is ever in tune. 

Benson, Music: A Mathematical Offering, chapters 4–6.

Forster, Musical Mathematics, chapters 9–11.

Harkleroad, The Math behind the Music, chapter 3.

Loy, Musimathics, vol. 1, chapter 3.

Wright, Mathematics and Music, chapters 4–6, 11–12.

1. How can you use the harmonic series of a single note to create a scale 
with as many notes as you wish?

2. What makes a 12-note scale a natural choice? 

3. Why is a piano never in tune?

    Suggested Reading

    Questions to Consider



43

How Scale Tunings and Composition Coevolved
Lecture 5

The main point of the last lecture was that mathematics, especially 
the math of the harmonic sequence, informs which notes to include 
in a scale. In this lecture, we will continue to discuss scales, in 

particular, how mathematics informs the tuning of those notes—exactly 
which frequencies we choose to put on a particular scale. We’ll also discuss 
the profound impact these small changes have on composition, because 
this lecture also relates to the coevolution of scale tunings and musical 
composition in Western classical music.

Brief Review
•	 In the last lecture, we used math in the overtone series to inform our 

choice of notes on a scale. We used two key methods for choosing 
notes: First, we talked about choosing notes based on the overtones 
of a single fundamental, a fixed reference point. The second method 
was using overtones of one note to inform the next note and then 
using the overtones of that note to get the next—bootstrapping.

•	 Remember that objects vibrate in different modes, and we now 
know very well that those frequencies are in a ratio of 1 to 2, to 
3, to 4, to 5, and the wavelengths are in a ratio of 1, 1/2, 1/3, 1/4. 
What we learned from the overtone series is that to go up an octave, 
we multiply the frequencies by 2, and to go down an octave, we 
divide by 2. We also know that to go up a fifth, we multiply the 
frequencies by 3/2.

Just Tuning Revisited
•	 Let’s start by finding the frequencies in A-major scale. Where 

exactly should you put your fingers on the strings to play in A-major 
scale? We’re going to come up with three different answers, two of 
which we discussed in the last lecture: just tuning and Pythagorean 
tuning, which is the bootstrapping idea. The third answer is equal-
tempered tuning, which is modern piano tuning.
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•	 As we said, just tuning is great for some instruments, such as 
bagpipes and sitars. It’s used in some musical traditions where there 
were no modulations, no key changes. Pianos are never in tune, 
in part because we try to modulate. Essentially, bootstrapping is 
modulation. We start at the low A and we take the fifth of that, and 
then we modulate into that key to find the fifth note in that. 

•	 The problems with tuning pianos gave rise to a slow evolution 
of tunings that mirror changes in composition. But if we use just 
tuning, no evolution of tunings is needed. We can always just tune 
things exactly with the fundamental. 

•	 We can calculate the exact frequencies on a just scale using the 
overtones. As we’ve seen, we can generate as many notes as we 
want by taking the overtones and bringing them into the correct 
octave. In this way, we generate a seven-note scale. The problem 
with this scale is that although the notes are in tune with A (the 
fundamental), they aren’t in tune with each other. 

•	 Let’s look at the F-sharp. If you remember, the F-sharp we got 
originally for a pentatonic scale was a different F-sharp; it was not 
in our 12-note scale. This F-sharp is in our 12-note scale. 
o The just-tuned F-sharp is related to the ratio of 5/3. The 

frequency should be 5/3 multiplied by the fundamental. That’s 
about 1.667. 

o The overtones of B include an F-sharp, and we’ve figured 
out the frequency for B. B is related to the ratio 9/8; the 
first overtone of B will be 2 × 9/8, which is 9/4. The second 
overtone will be an F-sharp. It’s actually an F-sharp6, and that 
is 3 times the fundamental B, or 3 × 9/8, or 27/8. 

o To get an F-sharp5, we divide the F-sharp6 by 2 and get 27/16, 
or about 1.688. 

•	 This is why playing in an ensemble is difficult. If you see an 
F-sharp on your page, then you actually need to play a different 
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note if everyone around you is in the key of A (F-sharp at 1.667) 
than if everyone is in the key of B (F-sharp at 1.688). 

•	 What’s going on here is a fundamental problem. We can’t create 
the scale so that the overtones of one note exactly match up with 
the other notes. Even with only three notes, the additive structure of 
the overtones conflicts with the multiplicative structure of intervals. 

•	 This isn’t just a problem with pianos or other fixed-tuned 
instruments. The mathematics tells us that no instrument can play 
A, B, and F-sharp so that they’re all in tune with each other.

Pythagorean Tuning
•	 Of course, Pythagorean tuning is named after Pythagoras of Samos. 

Followers of his belief system thought that all numbers could 
be written as fractions (rational numbers). They didn’t believe 
in the existence of such numbers as √2, which cannot be written 
as a fraction. The Pythagoreans further believed that musical 
notes were pleasing together if the ratio of frequencies was a 
fraction with small numbers. Thus, they prized the octave, with 
its 2:1 ratio, and the fifth, with its 2:3 ratio. The fifth is the key in  
Pythagorean tuning. 

•	 The goal in Pythagorean tuning is to keep the fifths exactly in tune. 
When we tune Pythagorean scales, what we’re doing is walking 
around the “circle of fifths.” From one note to the next, we’re going 
up a fifth, which is seven half-steps or seven keys on a piano. That’s 
also going from the fundamental to the fifth note on the major scale. 

•	 Let’s take a trip around the circle of fifths: We start on A, and the 
fifth note on the A-major scale is E; the fifth note on that scale is 
B, then F-sharp, and then C-sharp. We can also go backwards. 
The fifth below A is D; in other words, an A is the fifth note on the 
D-major scale. 

•	 Again, to go up an octave is multiplying by 2, down an octave is 
dividing by 2, and up a fifth is multiplying by 3/2. If we start out 
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on A4 at 440 Hz, let’s think of that as 1 and work in relation to that 
frequency. We’re looking to put scale notes in between A4 and A5 to 
tune our scale. Really, that’s between 440 Hz and 880 Hz, which is 
the octave above an A4, but in terms of our fundamental at 1, we’re 
thinking of getting numbers between 1 and 2. 
o As an example, let’s see if we can find the C-sharp on our scale. 

To get a C-sharp, it looks on our scale as if we have to go up 
4/5. To do that, we need to multiply by 3/24. That doesn’t get us 
to the correct C-sharp; it gets us to C-sharp7. 

o We have to go back two octaves to get down to C-sharp5, the 
one we want. That’s dividing by 2 each time. Now that we’ve 
found our C-sharp, we should multiply by 3/24 and then divide 
by 22. The answer comes out to about 1.266. 

•	 If we work through all the details, we can come up with an A-major 
scale where the fifths are tuned exactly perfectly. For comparison, 
the C-sharp on the just scale was 4/5, or 0.8, whereas the C-sharp 
on the Pythagorean scale is 64/81, or about 0.79. Those are  
quite different. 

•	 If we think about this on a piano, we could start tuning at A and go 
up to 12/5. As we saw in the last lecture, the problem with piano 
tuning was that going up 12/5 was different from going up seven 
octaves, although it ended up at the same key: 3/212 was not the 
same as 27. That gap between 12/5 and seven octaves is called the 
“Pythagorean comma.” Even though the gap is small, it has led to 
significant changes in composition.

“Tempering” the Gap
•	 There are multiple ways to “fix” the gap, although there are no exact 

solutions. We can, for example, put the entire gap in the last fifth. 
We can spread the gap out among more of the fifths so that they’re 
not perfect 3/2 ratios but the last fifth doesn’t have such a large gap.

•	 When we spread the gap out more, keyboards will sound good in 
a greater number of different keys. Spreading the gap out gave 



47

composers more flexibility, resulting in an evolution in music—
from the Baroque, to the Romantic, to 20th-century music. 

•	 By 1900, modern tuning on a piano spread the gap out completely 
evenly. Every fifth on a modern-tuned piano, or an equal-tempered 
piano, is equally out of tune. Remember, though, the problem here 
is that 3/212 is not the same as 27. 

•	 Mathematically, we can solve this by finding a solution to r12 = 27. 
We take the 12th roots of both sides to get an answer of r = 27/12. 
When we plug that into a calculator, we get about 1.4983, close to 
1.5. That value of r is irrational; it cannot be written as a fraction. 
The Pythagoreans didn’t think that such numbers existed. 

•	 Let’s look at another perspective: If we divide the octave into 12 
equal half-steps (multiplicatively, not additively), then each one 
should have a ratio of 21/12. If each half-step had a ratio of 21/12, then 
seven of them will have a ratio of 27/12, which is the number we  
just got. 

•	 Let’s use this number to construct the scale. Again, we start with a 
440-Hz A. If we want to find C-sharp, that’s up four fifths and down 
two octaves. We go up four fifths from the 440-Hz A—that’s our 
key number r4—and then we divide by 4 to go down two octaves. 
When we do that calculation, we get roughly 554.36 Hz. Remember 
that a just C-sharp was at 5/4 of the fundamental, and that gives us 
a 550-Hz note. 
o How different are the just C-sharp, the Pythagorean C-sharp, 

and the equal-tempered C-sharp?

o With the A at 440, the just C-sharp was 550 Hz exactly. The 
Pythagorean C-sharp was roughly 556.89, and the equal-
temperament C-sharp was 554.36. The Pythagorean C-sharp 
sounds sharper and higher in pitch. The equal-tempered 
C-sharp is in between the just and the Pythagorean.
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Why 12 Keys per Octave?
•	 Why does the equal-temperament system use 12 notes and not a 

different number? Would another number work better? 

•	 Let’s build a scale with equal spacing, which gives us maximum 
flexibility. If we have equal spacing, we can modulate into any key 
we want. The notes that we definitely want in our scale include the 
octave, the fifth, the fourth, and the major third. 

•	 Suppose the fundamental is at 100 Hz. In just tuning, which sounds 
best, the octave will be double that, the fifth will 3/2 of that, the 
fourth will be 4/3, and the major third will be 5/4. Those are the 
notes that are perfectly in tune with the overtones, and those are the 
key fractions that we need to look at: 3/2 is 1.5, 4/3 is 1.3, and 5/4 is 
1.25. For what values of n will a scale with n equally spaced notes 
include notes that are close to these key fractions? 
o Let’s work by trial and error. If we want to add a note between 

the fundamental and the octave, that note needs to be exactly 
halfway in between. If we do the calculation, we get a “tritone,” 
the augmented fourth. 

o If we want to add two notes between the fundamental and the 
octave, we get close to the major third, but we don’t get close 
to the fourth or fifth. In fact, as we continue to add notes, we 
get close to some of the key ratios but not all three.

o It’s not until we reach 12 notes that we get very close to the 
three key ratios we want to hit. If we want equally spaced notes 
and we want to match up with the most prominent overtones 
(the major third, the fourth, and the fifth), we need at least  
12 notes.

What about n-Note Scales?
•	 Let’s try to resolve this in a different way, using some mathematical 

theory. If we were to place n equally spaced notes (multiplicatively 
spaced), they would have relative frequency of 1 (the fundamental) 
and then 21/n, 22/n, 23/n, up to 2n/n, which is 2, and we would be at 
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the octave. Remember for our 12-note scale that each half-step was 
21/12; this is just a generalization of that for n notes. 

•	 Let’s say that the kth one of those is close to the fifth: 2k/n ≈ 3/2. We 
can multiply both sides of that equation by 2, then we take the log2 
(log base 2), and what we get is that the log2 of 3 needs to be very 
close to k/n + 1. In other words, we need a fraction k/n that is very 
close to log2(3) – 1. We’re looking for a rational approximation of 
the log2(3). 
o Here, “rational” means “ratio” or “fraction,” and “rational 

approximation” means that we’re trying to get close to an 
irrational number using just rationals (fractions). There’s a sort 
of astonishing connection here to something called “continued 
fractions” that we’ll discuss more in a later lecture.

o The log2(3) is about 1.58496. To get an approximation of this, 
we can find the continued fraction. Then we ask the question: 
Where should we cut off this fraction?

The most famous continued fraction is the “golden ratio,” which appears in art 
and architecture and throughout nature.
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o If we stop after two layers, we get 3/2 (1.5), which is not a 
very good approximation of 1.58496. If we stop after three 
layers, we get 1.6, which is a little bit better. When we stop 
after four layers, the value of the continued fraction is 19/12, or 
1.5833…, quite close to the actual value of the log2(3). 

•	 What would it mean musically to take this as a rational 
approximation? 
o It would mean that we are approximating log2(3) with 19/12, and 

when we invert the log, we’re taking exponentials, so that would 
mean 219/12, or approximately 3. We can divide both sides of that 
equation by 2, and we get 27/12, or approximately 3/2. 

o That’s saying that one way to approximate 3/2 is to use 
27/12. That was the equal-tempered fifth. In other words, this 
continued fraction just gave us the equal-tempered 12-note 
system of Western music today. 

•	 What would our musical system look like if we had taken one more 
layer of fractions? When we do that, we get 65/41, and that gives 
us 224/41 ≈ 3/2. Musically, we would need 41 keys between one 
octave and the next, and the 24th of those would be very close to a  
perfect fifth. 

•	 Here’s what the mathematics is telling us: If we want to get a better 
and better approximation—if we want a note that is closer and 
closer to the pure fifth of 3/2—we need to keep taking more layers 
in our continued fraction. As we do that, the advantage is that some 
notes are much better in tune; the disadvantage is that we have too 
many notes in each octave.

Why Do Tunings Matter?
•	 Just tuning, Pythagorean tuning, and equal-tempered tuning 

aren’t actually very different, so why do we care? The answer is 
that tunings matter because composers use keyboards to compose 
music, and what sounds good on a keyboard depends on the tuning. 
Before we had equal-tempered tuning, composers chose different 
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keys for different moods, because when the gap wasn’t spread out 
evenly, different keys actually sounded different. 

•	 In Western music, from about 1500 to 1900, the Pythagorean comma 
was spread out more and more equally. Tuning systems included 
the meantone and quarter-comma meantone, Werckmeister III, 
Kirnberger III, well-tempered, quasi-equal tempered, and finally, 
equal tempered. Pianos were tuned equal tempered by the late 1800s. 

•	 Interestingly, the fact that guitars have frets that go across all of 
the strings made it necessary to use equal-tempered tuning back in 
1500, when guitars were first made. There is almost no piano-and-
guitar music in the period 1500–1900, partially because a guitar and 
piano used different tuning systems and would have been out of 
tune with each other. 

•	 A quick tour of the history of Western classical music shows a 
coevolution of tunings and composition. Tunings moved from not 
spreading out the Pythagorean comma at all to evenly spreading 
it out. As that happened, composers gained access to increasing 
numbers of keys that sounded good, and over time, they lost the 
devotion to a single key and moved toward all keys being equal. 
Understanding Western classical music requires understanding the 
mathematics of the tunings that underpin the compositions.

Barbour, Tuning and Temperament.

Benson, Music: A Mathematical Offering, chapters 4–6.

Duffin, How Equal Temperament Ruined Harmony.

Dunne and McConnell, “Pianos and Continued Fractions.”

Forster, Musical Mathematics, chapters 9–11.

Harkleroad, The Math behind the Music.

Loy, Musimathics, vol. 1, chapter 3.

    Suggested Reading
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Wright, Mathematics and Music, chapters 4–6, 11–12.

1. How do subtle changes in tuning mirror changes in compositional styles, 
and how does mathematics inform those changes? 

2. Explain the choices a piano tuner has to make when tuning the fifths on 
a piano.

    Questions to Consider
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Dissonance and Piano Tuning
Lecture 6

We now understand a single note and how it vibrates, and we 
understand the sequence of notes called a scale. In this lecture, 
we’ll talk about two or more notes played at the same time—a 

chord—such as some of the chords we hear in Bach’s Chaconne. Not 
all combinations of notes sound good, and that’s also the topic of this 
lecture: dissonance, the rough, slightly unpleasant sound we hear when 
music is played out of tune. We’ll look in particular at the mathematics 
of dissonance.

Defining Dissonance
•	 Dissonance is a discordant sound that’s produced by two or more 

notes played together that sound displeasing or rough. It’s a sort of 
tonal tension. Sometimes, composers will build in dissonance for a 
tense moment and then release it by finding consonance.

•	 Dissonance has both a physical and a cultural component, and 
what’s considered dissonant changes over time. The Pythagoreans 
thought that notes in consonance had a ratio of frequencies with 
small numbers and that dissonance was anything but that. 

•	 Herman von Helmholtz, a German mathematician and physicist, 
gave a mathematical description of dissonance. For him, it involved 
the overtones, as well as the fundamental notes. His explanation 
was that dissonance was “beats.”
o The Grove Dictionary of Music calls this kind of beats 

“an acoustical phenomenon useful in tuning instruments, 
resulting from the interference of two sound waves of slightly  
different frequencies.” 

o What we mean by that is a throbbing sound produced when 
two notes are played slightly out of tune with each other. 
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o We hear an example in two Ds, one played on an open D-string 
and one played on a G-string. The timing of the throbbing 
sound can be changed by moving the notes closer to each other. 
As the notes get closer, the beats slow down. As the notes get 
further apart, the beats speed up. If the notes are exactly the 
same or very far apart, we hear no beats at all—either just one 
note or two separate notes.

The Beat Equation
•	 The beat equation is a trigonometric identity:

•	 Let’s look at an example to make sure we understand this equation. 
We’ll let a be 5t and b be 3t. Now the equation is:

 sin(5t) + sin(3t) = 2sin(4t)cos(t)

o Looking at a graphical representation of this equation, notice 
that we use point-wise addition to solve the left side. We pick 
some x value and look at the height of sin(5t), and then for the 
same x value, we look at the height of sin(3t). Adding those 
two heights gives us the solution for sin(5t) + sin(3t).

o For the right side of the equation, we do point-by-point 
multiplication. For a particular value of x, we look for the 
height of sin(4t) and the height of cos(t), and we multiply those 
values. If either of those functions is 0, then when we multiply, 
the product will be 0. The last thing we have to do on the right 
side of the beat equation is multiply by 2 to get the solution for 
2sin(4t)cos(t).

o The graphs for the left and right sides of the equation are 
exactly the same.

sin( ) sin( ) sin cosa b a b a b
+ =

+







−





2

2 2
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•	 We can also explore a musical example. Here, let’s take a to be (450 
× 2π × t) and b to be (440 × 2π × t). These represent a 450-Hz sine 
wave and a 440-Hz sine wave. 
o According to the beat equation:

 sin(450 × 2π × t) + sin(440 × 2π × t) = 2sin(445t × 2π) + cos(5t × 2π)

o For any particular x, when we add the value of the 450-Hz 
wave and the value of the 440-Hz wave and we listen to the 
result, we can hear dissonance. 

o If we zoom out from the graph, we can see the beats in the 
wave form. 

o On the right side of the equation, when we multiply  
sin(445t × 2π) and cos(5t × 2π), it seems almost as if the cosine 
becomes an envelope into which the sine wave fits.

o The sine wave is going back and forth between +1 and –1. 
When it gets to +1 and we multiply by the cosine, we simply 
get the value of the cosine. When it gets to –1 and we multiply 
by the cosine, we get the negative value of the cosine. That’s 
why this function appears to be wavering back and forth inside 
the cosine envelope. The cosine term is producing the beats 
and telling us how fast the beats are.

•	 The beat equation tells us that if we have a and b, where a is slightly 
larger than b, we should get a – b beats per second. But from the 
formula, it looks like we should get (a – b)/2 beats per second. Why 
the difference?
o It’s true that the cosine has a frequency of (a – b)/2. But every 

full wavelength of the cosine has to go down and back up, and 
when it does that, that single wave form of the cosine produces 
two beats. 

o The sound is beating twice during one full cycle of the cosine. 
That tells us that our conjecture was correct. It’s not (a – b)/2 
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beats per second, as the cosine would indicate. It’s double that, 
giving us a beat frequency of a – b.

•	 What happens when a = b? When we solve the equation, we find 
that the cosine term disappears, and there are no beats.

•	 In the last lecture, we learned that subtle changes in pitches have 
led to big changes in composition. In practice, how exactly do we 
make subtle changes in pitch? The answer is by using beats. A 
demonstration of piano tuning helps us understand.
o When you tune a piano, you need to adjust the tension on the 

strings. As we know, adjusting the tension affects the frequency 
at which the strings vibrate. 

o As you bring two strings into tune—as the two frequencies get 
closer—the beats slow down. When the two frequencies are 
equal (a = b), we’re left with two copies of the sine, and the 
beats disappear. This process is called “tuning a unison.”

A Question about Beats
•	 If you hear two notes played that are close in frequency, your 

brain hears the right side of the beat equation. If you hear two 
notes played that are far apart, your brain hears the left side of the 
equation; it hears two notes, but you actually can hear beats when 
an octave is played out of tune.

•	 We originally thought that when the frequencies were far apart, we 
wouldn’t hear beats, but we do, and it seems as if the beat equation 
doesn’t explain this. 
o If we played an A at, say, 442 Hz and another at 220, the beat 

equation tells us that we should hear the difference between 
them. We should hear 222 beats per second if we’re hearing the 
right side of the equation. But we’re not hearing the right side; 
we’re hearing the left side. We’re hearing two notes, so why 
are we hearing beats?
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o To answer this question, we have to go back to the overtone 
series. If we’re playing one note at 220 Hz, we’re hearing its 
overtones, that is, all the multiples of 220: 440, 660, 880, and 
so on. If we’re playing the higher note, 442, we’re hearing its 
overtones: 884, 1226, and so on.

o The beats aren’t coming from the fundamentals, which are 
200-some Hz apart. The beats are coming from one of the 
harmonics of the lower A (440 Hz) and the fundamental of the 
higher A (442 Hz). 

o We’re hearing both of those frequencies, which are very close 
together, and because of those frequencies, we hear beats. 

•	 This problem of beats with notes played far apart doesn’t appear 
only with octaves; it also happens with other intervals. The key 
observation is that if two of the overtones of two notes are close, we 
will hear beats.

•	 Let’s look at a fifth: an A at 440 Hz and a note at 293 Hz that is close 
to a D. The A is the fifth note on the D-major scale, and that’s why 
it’s an interval of a fifth. If we play A 440, we hear the fundamental 
at 440; we hear the second harmonic at 880, and then 1320, and 
1760. For the note that’s close to the D, we hear the fundamental 
at 293; we hear the second harmonic at 586 and the next one at 
879, which is close to the 880 in the first overtone of the 440 A. 
Listening to those notes, we could hear beats.

•	 At what frequency should we put the D in order to completely 
eliminate the beats? 
o Let’s put the D at x Hz. If we play something at x, we know its 

overtones will be 2x, 3x, 4x, and so on. It’s the 3x that we want 
to try to match up with the 880, the first overtone of the A. That 
gives us an equation to work with: 3x = 880. Solving, we find 
that we should put the frequency of this D at 279 1/3 Hz.
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o We know that a perfect fifth should have a ratio of 3/2. If we 
divide 440 Hz by the lower frequency, which is 293 1/3, we  
get 3/2.

Tuning Fifths
•	 What we just calculated was this: If we want a Pythagorean or a 

just-tuned tuning system—if we want the fifth to be perfect—we 
should aim the D for 293 1/3 Hz. But on a modern piano, we don’t 
want the fifths to be perfectly in tune; we need them to be slightly 
narrower. Instead of 3/2, the ratio needs to be 27/12.

•	 We need to determine the correct frequency for the D, and then, we 
use that and the beat equation to figure out how fast the beats should 
be when we play that D with a 440 A. We then use that answer to 
tune the D.

•	 The first step is to find the frequency for a correctly tuned equal-
tempered D. That means adjusting the fifths so that the octaves 
will work out when we get to the top—spreading that Pythagorean 
comma completely evenly around all the fifths.
o Remember, the half-steps were tuned to 21/12, and the fifths 

were tuned to a ratio of 27/12. If the A is tuned to 440, then the D 
should be tuned to some frequency z so that z(27/12) = 440.

o Solving, we find that the D should be tuned approximately to 
293.66 Hz. 

•	 The next step is to figure out how fast the beats will be if we tune 
the D exactly to that value. 
o If we play the 440 A, we’ll hear all of its overtones, including 

the pure 880. If we play the equal-tempered D at 293.66 Hz, 
its second overtone (third harmonic) will be at approximately 
880.99 Hz. 

o The beat equation told us that the difference between those two 
would give us the frequency of the beats. That difference is 
about 0.99, just slightly under 1 beat per second.
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•	 The math tells us that if we want 
equal-tempered fifths, we should 
tune the fifths so that they’re not 
perfect, but they’re just narrow 
enough that we hear 1 beat per 
second.

•	 Essentially, we now know 
everything we need to know 
in order to tune a piano. Of 
course, many piano tuners today 
use electronic tuners, and in 
fact, some of them don’t tune 
in an equal-tempered manner 
because some performers don’t 
want equal-tempered tuning for 
particular pieces.

•	 The octave, the fifth, and the 
fourth are called perfect intervals, and greater precision is required 
in playing them. If they are played a little bit out of tune, the beats 
can be heard. 
o This becomes important in some music. For example, much of 

the music of Aaron Copland invokes an open American spirit. 
The way he achieved that open feeling was by using open 
chords—these perfect intervals. 

o An excellent example can be heard in a piece written by 
Copland called the Fanfare for the Common Man.

A Mathematical Coda
•	 Virtually everything we’ve done in this lecture relies on a single 

equation, the beat equation. We can walk through a proof of this 
equation that requires just a few trigonometric facts and some basic 
geometry.

Piano tuning is an art, and the 
truly great tuners work by ear, 
not with an electronic tuner.
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•	 The proof implies that when two notes are just slightly out of tune, 
we should get dissonance. From this, we know why musicians have 
to be more careful with some intervals than with others and why 
piano tuners use dissonance to tune in an equal-tempered system. 

Benson, Music: A Mathematical Offering, chapter 1.

Fischer, Piano Tuning.

Forster, Musical Mathematics, chapters 2, 5 (on the subtleties of vibrating 
piano strings).

Loy, Musimathics, vol. 1, chapter 6.

1. How does mathematics explain the “beating” phenomenon we hear 
when two notes of similar frequencies are played?

2. Why is it more important for musicians to play octaves, fifths, and 
fourths in tune than other intervals? 

    Suggested Reading

    Questions to Consider
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Rhythm—From Numbers to Patterns
Lecture 7

In all of our lectures so far, we’ve talked about a single topic, pitch. In 
this lecture, we will turn to rhythm. The term is difficult to define, but we 
can think of it as a regularly ordered pattern of durations and strengths 

of notes. Imagine music without rhythm or, more precisely, music without 
any change in rhythm. There would be no drama, no suspense, no life to the 
music! At the other end of the spectrum, American composer Steve Reich’s 
work Clapping Music shows that it’s possible to have music with only 
rhythm. In this lecture, we’ll see how composers use rhythm as a musical 
tool to add interest and emotion to their work.

Rhythm in Poetry
•	 Rhythm plays a role not only in music but also in poetry because 

words form a rhythm. Indian poetry, for example, provides some 
interesting connections between rhythm and mathematics.

•	 Indian poetry was traditionally written in Sanskrit, and it has two 
types of words: those with short syllables and those with long 
syllables that are exactly twice as long as the short ones.

•	 Pingala was an Indian poet who lived several centuries before 
the Common Era. He asked an interesting question: How many 
different ways are there to put short and long syllables together to 
get a line of a given length? If we’re thinking musically, we could 
ask: How many different ways can we put one- and two-beat notes 
together to get a rhythm n beats long?

•	 Interestingly, the answer to this question follows the pattern of the 
Fibonacci numbers. For a one-beat rhythm, there is just 1 choice; 
for two beats, 2 choices; for three beats, 3 choices; followed by 5, 
8, 13, and so on. Why is it that the next number in the pattern is the 
sum of the two previous numbers?
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•	 Here’s another question: To get the answer for n beats, do you have 
to figure out all the choices before it? The answer is no. Binet’s 
formula gives us the number of ways of using short and long 
syllables to form an n-beat phrase.

Western Musical Notation
•	 In Western musical notation, a whole note represents four beats; a 

half note is two beats; a quarter note is one beat; an eighth note is 
half a beat; a sixteenth note is a quarter of a beat; and so on. Music 
also uses rests for silences of the same length of any of these notes. 
Further, there is notation for notes that aren’t fractions with a power 
of 2, such as triplets or quintuplets. A dot added after a note or a rest 
symbol adds half the length of the note or rest.

•	 The time signature, which looks suspiciously like a fraction, tells us 
how many notes are in a particular measure. For example, with 3/4 
time, each measure has three beats (the top number), and each beat 
is one quarter note long. The time signature 4/4 is called “common 
time.” It’s four beats per bar, and each beat is a quarter note long.

•	 There are many standard time signatures: 3/4, 2/4, 2/2, 6/8, and 
so on. Notice that the top number can be any natural number, but 
the bottom number must be a power of 2. Modern composers 
sometimes make use of stranger options, such as 7/16.

Hemiolas
•	 The time signatures that involve groups of six, such as 6/8 time, 

are mathematically interesting. The number 6 is the product of two 
prime numbers, 2 and 3. We can think of 6 as two groups of 3 or 
three groups of 2.

•	 Musically, 6/8 sometimes feels like triplets (1-2-3, 1-2-3) and 
sometimes feels like three 2s, (1-2, 1-2, 1-2). The song “I Like to 
Be in America” from Leonard Bernstein’s West Side Story groups 
the beats in both ways.
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•	 A “hemiola” is a particular musical figure heard in a piece in which 
every six beats are usually grouped into two groups of 3, and then 
the hemiola comes when those six beats are grouped into three 
groups of 2. Hemiola means “one and a half,” and that’s the ratio of 
the length of the groups, groups of 3 to groups of 2.

•	 The hemiola is used extensively in Western classical music, 
especially by Handel but also by Brahms and Dvořák. The effect 
of using a hemiola is that it interrupts the normal flow, catching the 
listener a bit off guard. We hear an example from Handel’s Water 
Music of 1717.

Polyrhythms
•	 Polyrhythms occur when two parts are playing in different rhythms. 

Chopin’s Fantasie Impromptu, which we heard at the beginning 
of this lecture, uses polyrhythms to give the music an agitated, 
unsettled feeling.

•	 We hear a polyrhythm of four versus two written in 4/4 time. We 
can think of this as four quarter notes in one part and two half 
notes in the other. With an example of three versus two, we hear 
that the two parts don’t quite fit together. This is sort of like a 
hemiola, except instead of being played sequentially, the notes are  
played simultaneously.

•	 One of the more 
famous examples of 
polyrhythm comes in 
the third movement of 
Tchaikovsky’s Piano 
Concerto No. 3. The time 
signature is 3/4, three 
quarter notes per bar. The 
piano part is played in 3s 
(1-2-3, 1-2-3, 1-2-3), but 
the part for the strings is 
played in 2s (1-2, 1-2).

Polyrhythms are used throughout 
Western music and in african 
drumming.
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•	 Why do composers use polyrhythms? They lend a sense of 
instability to music. Listeners get the feeling of turning around 
or being unsettled before the music resolves back into a normal 
rhythm. The two rhythms act as two competing forces, introducing 
rhythmic tension to the music. Finally, that rhythmic tension is 
released when the rhythms fall back into line.

Calculating Polyrhythms
•	 Calculating polyrhythms is similar to adding fractions. With a 

rhythm of three versus two, what we’re doing in one part is dividing 
something into three equal parts. In the other part, we’re dividing 
the same thing into two equal parts. To do this, we need a sort of 
common denominator. We need some sort of equal-spaced piece 
that we can divide the measure into.

•	 With two versus three, we divide the bar into six equal parts. That’s 
the right-sized piece that allows us to split the bar into groups of three 
and groups of two. With a rhythm of p versus q, we need to divide the 
time into the least common multiple of p and q. That’s exactly what 
we would do if we were adding the fractions 1/p and 1/q.

•	 Let’s consider a rhythm of three versus four. The easiest time 
signature to use for this rhythm would be 12/8, but we could also 
write the same pattern in 6/8. We could even use triplet notation to 
write it in 4/4 or 2/4.

•	 Chopin’s Fantasie Impromptu is written in 4/4 time. There are 
four quarter notes in each bar. The right hand in this piece plays 
sixteenth notes (1-2-3-4, 1-2-3-4, 1-2-3-4 in every beat), and the 
left hand plays triplets (1-2-3, 1-2-3, 1-2-3, 1-2-3 in every beat). 
The tempo marking for this piece is allegro agitato, and we can 
hear the agitation caused by this polyrhythm.

Complicated Polyrhythms
•	 Why and how would you play such rhythms as three versus five 

or four versus seven? For three versus five, you would need 15 
divisions. For four versus seven, you would need 28 divisions.
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•	 Chopin used some of these more exotic polyrhythms. In a span of 
just five bars in his Nocturne Opus No. 3, he uses three versus five, 
three versus seven, three versus eight, three versus one, and more. 

•	 Another extreme example comes from the Grieg Piano Concerto, 
composed by Edvard Grieg. This example is in the first movement, 
in the cadenza, where the orchestra drops out and leaves just the 
solo pianist. In this section, the left hand is making runs of seven 
notes per beat, and the right hand is playing a melody plus eight 
notes per beat. If we wanted to do this exactly, we would have to 
divide each beat into 56 pieces. 

•	 The second movement of Charles Ives’s Fourth Symphony takes 
polyrhythms to their logical extreme: Two different parts of the 
orchestra are in two completely different rhythms. In fact, two 
conductors are usually used to perform this piece.

Combining Rhythm and Pitch
•	 So far, we’ve heard rhythmic patterns, but if we add pitch, we can 

do more interesting things. Let’s return to a single instrument and 
think about playing a rhythmical pattern that is five notes long.

•	 We could add to those notes a pattern of three pitches. Notice that the 
notes and the pitches don’t match up. As these patterns are played 
together, the music sort of turns around and takes a while to get back 
to the beginning, almost like two gears of different sizes turning 
together. We know that the pattern repeats every 15 notes (three 
measures) because 15 is the least common multiple of 3 and 5. 

•	 George Gershwin’s piece Rhapsody in Blue makes use of these 
repetitious phrases. We can hear the sense of turning and instability, 
followed by a resolution when the rhythms and pitches line up again. 
o Another example from Rhapsody in Blue has six notes per bar 

with an eight-note scale; the pattern repeats every 24 notes 
(four measures).
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o Notice that Gershwin builds up rhythmic tension with this 
pattern of unmatched rhythms and pitches; he then pauses and 
hits listeners with a chord full of dissonance. 

•	 There are many examples in music where we can pull out these 
kinds of rhythmic patterns. For example, in the opening of Till 
Eulenspiegel’s Merry Pranks by Richard Strauss, there’s a seven-
beat phrase played by the horn, but the piece is in 6/8 time; the 
phrase doesn’t repeat for 42 notes. In Olivier Messiaen’s Quartet 
for the End of Time is an extreme example, with competing patterns 
that are 17 and 29 notes long.

A Musical Proof
•	 Let’s close by looking at a mathematical question we can answer 

with musical notation. Does the following sum go to infinity: 1/2 
+ 1/4 + 1/8 + 1/16 + 1/32…? The answer is no. If we keep adding 
numbers like this forever, we get 1. We can prove this answer  
with rhythms. 

•	 Let’s think about writing a measure of music in 4/4 time; that’s four 
quarter notes per measure. We start with a whole note, which takes 
four beats, so we have one measure. Mathematically, we have one 
note that has four beats that equals one measure, so that’s 1 = 1.

•	 We replace that whole note with two half notes, which are two beats 
each. We still have one whole measure, but now, mathematically, 
we’re looking at two half notes equals one measure: 1/2 + 1/2 = 1. 

•	 Next, we replace the second half note with two quarter notes, 
which are one beat each. We still have one whole measure, but now 
mathematically, we have 1/2 + 1/4 + 1/4 = 1.

•	 The pattern here is as follows: Each time, we replace the last note 
with two notes, each of which is half as long as the one we replaced. 
That leaves the total length of the rhythm exactly the same—one 
measure long. If we continued this process mathematically into 
infinity, we would prove 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + … = 1.
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•	 Mathematically, this is called a “geometric series.” Each term is 
equal to the previous one multiplied by a fixed constant, in this 
case, 1/2. 

Magadini, Polyrhythms.

Wright, Mathematics and Music, chapters 2, 8.

1. How is the mathematics of adding fractions (common denominators) 
related to the musical idea of polyrhythms?

2. How do composers use the idea of least common multiples to create a 
sense of instability or turning?

    Suggested Reading

    Questions to Consider
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Transformations and Symmetry
Lecture 8

So far in this course, we have discussed the mathematics of the musical 
experience. We started by coming to understand a single note and 
varying its pitch; then we combined notes into chords and scales; and 

finally, we added rhythm. Now, we’re ready to start composing music. In 
this lecture, we will discuss parallels between musical and mathematical 
transformations. A transformation is the process by which one expression is 
converted into another that is equivalent in important respects but differently 
expressed or represented. Transformations add beautiful structure to both 
mathematics and music. 

Geometrical, Functional, and Numerical Transformations
•	 Geometrical transformations are, perhaps, the simplest to begin 

with. Let’s consider any figure in a plane and let r(x) be the 
reflection of that figure over the x axis. We actually have two 
transformations here: reflecting the figure over the x axis (the 
reflection transformation) or doing nothing (the zero, identity, or 
“do nothing” transformation).
o The operation in this case will be one transformation 

followed by the next (composition). If we do nothing and 
then do nothing again, the net result is doing nothing. If we 
do nothing and then reflect, the net result is a reflection. If we 
reflect and do nothing, again, the result is a reflection. But if 
we do a reflection and another reflection, the net result is the  
identity transformation.

o A “group table” is an array listing all the possible outcomes 
from our operation of one transformation followed by the next. 
In our case, this will be a 2 × 2 table.

•	 Some functional transformations are similar to geometrical 
transformations. For the function f(x), the identity transformation 
would be doing nothing, but we could also do a negation—we 
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could look at –f(x). This flips the function over the x axis. Again, we 
have two transformations here—the identity transformation and the 
negation transformation—and the operation is composition.
o Of the possible four pairings with this transformation, the 

interesting one is taking the negation and the negation again, 
which gets us back to the identity. 

o Note that the transformations are not the graphs but how the 
graphs are changing. The transformation isn’t the picture but 
how the picture changes.

•	 Let’s think about addition with regard to the set of even and odd 
numbers. The set consists of all the even numbers and all the odd 
numbers. We can construct a group table for transformations of this 
set that tells us: even + even = even, even + odd = odd, odd + even 
= odd, and odd + odd = even. The identity here is even because 
it operates on all the other elements without changing them. Both 
evens and odds are their own inverses.

•	 Mathematicians call this group Z2, and we think of it as addition 
modulo 2. The question to think about here is: If we divide by 2, 
what is the remainder? The answer is that the remainder is always 
either 0 (for evens) or 1 (for odds). We can represent all even 
numbers with 0 and all odd numbers with 1. The identity in this 
group is 0, and each of the elements is its own inverse.

Musical Transformations
•	 With a musical transformation, we could have no change in a melody 

(the identity), or we could do an inversion. We can think about this as 
a group because we have two transformations, and we can look at the 
structure of the group. Remember, we are not looking at the melody 
itself but how the transformation changes the melody.

•	 Each of Bach’s 14 canons on the Goldberg ground was written 
using transformations. The canons give us insight into how Bach 
used transformations to create increasingly complicated music. The 
canons are based on an aria from the Goldberg Variations and are 



70

Le
ct

ur
e 

8:
 T

ra
ns

fo
rm

at
io

ns
 a

nd
 S

ym
m

et
ry

all written on a single sheet, totaling perhaps six or seven minutes 
of music. The underlying ideas are very similar to group theory. 

•	 Geometrically, an inversion is flipping something over the x axis; 
functionally, it’s multiplying by a negative sign; and musically, 
it’s flipping all the intervals up. In canon 3, Bach puts this together 
as follows: the original melody (the identity transformation); the 
inverted melody, four notes after the melody; and a repetition of 
the sequence.

•	 In addition to musical inversion—playing a melody upside down—
we can also have a retrograde—playing a melody backwards. If 
we construct a group table, we again have two transformations: the 
original melody (the identity) and the retrograde. The retrograde 
followed by the retrograde results in the original. 
o The corresponding transformations in geometry are reflecting 

around the y axis instead of the x axis.

o In terms of functions, instead of looking at –f(x), this 
transformation looks at f(–x).

o Bach put together retrograde transformations in canon 1. We 
hear the theme twice, then the retrograde, then both played 
together. 

•	 Can we do both the retrograde and the inversion? There’s a problem 
when we try to construct a three-element group. We don’t have 
a transformation for a melody that is played retrograde and then 
inverted. Mathematically, we would say that this operation is not 
closed. We can fix the problem by adding an element that is exactly 
a retrograde inversion.

•	 In canon 2, Bach puts together not the original melody but an 
inversion of the melody and then adds the retrograde inversion. We 
hear the inversion played twice, the retrograde inversion played 
twice, and both played together. 
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•	 In canon 5, Bach introduces a new melody and its inversion. If you 
listen closely, you can hear two baselines in this piece. One is the 
main theme, and the other is the main theme’s inversion. 

Group Theory
•	 A group is defined as a set and an operation. An operation takes 

two things in the set as input and produces one thing in that set 
as output. For us, the operation was composition—doing one 
transformation and another.

•	 A group must also have four other properties: (1) It must be closed 
(the output must always be in the set); (2) it must have an identity (one 
element acts like 0 does in addition; it leaves all the other elements 
alone when we do the composition); (3) it must have inverses (there 
must always be a way to get back to the identity); and (4) it must 
have associativity (the grouping of elements doesn’t matter).

•	 Let’s consider addition with the natural numbers: 1, 2, 3, …. 
o We can construct a closed group table for this set, but there’s 

no identity. There’s no way to solve the equation a + x = a. We 
can fix this problem by adding 0 to the set, which means we’re 
working with the set of whole numbers.

o The table associated with the whole numbers is closed, has 
an identity, and has associativity, but there’s a problem with 
inverses. There’s no way to solve the equation a + x = 0. We 
can fix this by adding negative numbers to the set, which 
means we’re working with the set of integers.

o With addition of integers, we get a group; in fact, we get what’s 
called a “commutative group.” 

•	 Let’s now return to group Z2. We’ve seen many copies of this group: 
geometrical (reflections), functional (negating functions), evens and 
odds (addition mod 2), and musical (inversions). All of the tables for 
these groups have the same structure; we simply change the names of 
the columns and rows. These are called “isomorphic groups.” 
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•	 What is Z2? To answer this, let’s look at an easier question: What 
is 2? 
o The idea of 2 is an abstraction. When you’re looking at two 

apples, what’s there? Apples, not 2. In some sense, 2 is what 
the sets of two eyes, two ears, two fingers, and two apples have 
in common. 

o The same is true of Z2. None of the group tables we saw is Z2; 
Z2 is what all of those examples have in common. Both the 
number 2 and group Z2 are abstract mathematical concepts—
separate from the physical world.

Musical Transformations Revisited
•	 The four musical transformations we identified earlier (identity, 

inversion, retrograde, and retrograde inversion) fulfill all the 
properties of a group. But rather than a 2 × 2 chart, this is a 4 × 4 
chart; it’s clearly not Z2. 

•	 Considering that this is a four-element chart, we might guess that 
it would be Z4. Recall that we’re looking here at remainders when 
we divide by 4. The possible remainders are 0, 1, 2, and 3, but our 
table has a different structure. In the musical group we’re looking 
at, every element is its own inverse. If we do the inversion and then 
the inversion, we get the identity. But that’s not true in Z4. If we add 
the element 1 to itself, we don’t get back to the identity, 0. That tells 
us that these two groups are not isomorphic. 

•	 Let’s consider another representation of the same group in geometry. 
Here, the four elements are: the identity transformation, reflection 
over the x axis, reflection over the y axis, and reflection over both, 
or rotation of 180 degrees. That table has the same structure as the 
one for our musical group.

•	 In functions, the four elements would be: the identity transformation, 
–f(x) (reflecting over the x axis), f(–x) (reflecting over the y axis), 
and –f(–x) (reflecting over both, or rotating 180 degrees). Again, 
this table has the same structure as the one for our musical group.
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•	 To see the correct numerical example, we have to look at something 
called Z2 × Z2, the “Klein four group.” Z2 × Z2 is not just numbers; 
it’s actually ordered pairs of numbers, for example, 0 and 1 in one 
coordinate and 0 and 1 in the other coordinate. The operation here 
is coordinate-wise addition modulo 2. 
o Let’s try (0, 1) + (1, 1). We add the first coordinates, 0 + 1, to 

get 1. The second coordinates are both 1, but in modulo 2, 1 + 
1 = 0. When we add these two elements (0, 1) + (1, 1), we get 
(1, 0). Is this a group?

o The answer is yes; this is the same group table as the musical 
one.

•	 Interestingly, there are only two mathematical groups with four 
elements: Z4 and the Klein four group. 

Transpositions
•	 In music, a transposition is moving up or down in pitch. For 

example, instead of starting on the key A, we could start on D. That 
would be transposing up a fourth because D is the fourth note in the 
A-major scale. When we do this in music, it’s easily recognizable 
as the same tune, played a bit higher.

•	 A corresponding geometrical transformation would be taking a 
figure and translating it up. For functions, we could think about 
adding c to f(x). It’s just a vertical translation when we’re looking 
at a graph.

•	 The group structures of these transformations are interesting. We 
can find the inverse if we transpose up (we just transpose back 
down), but transposition has infinitely many elements. In theory, we 
could keep transposing up as many intervals as we want. At any 
point, if we wanted to go back down, we could transpose infinitely 
many steps. The table for this group is infinitely large.

•	 One way to keep the table from being infinitely large is to work by 
note names, that is, to work what’s called “modulo octaves.” This 
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approach treats every A on the piano as if it’s the same and every 
C-sharp as the same.

•	 Think about transposing up one half-step. If you transpose in this 
way 12 times, in terms of note names, you get back to where you 
started. You may start on A and go up 12 times, but you end at A. 
This is similar to adding 1 to itself but then somehow getting back 
to the beginning. 
o We actually see something every day that does exactly this: 

a clock, with the 12 acting as 0. This group is called Z12 or 
“clock arithmetic.” In Z12, if we add 10 + 3, that’s the same as 
adding three hours to 10 o’clock; we don’t get 13 o’clock but 
1 o’clock. 

o Transposition by half-steps is exactly the same thing. We go up 
12 half-steps and get back to the beginning. 

•	 What if we transpose up a major third, which is four half-steps? 
What group would we generate if we did this? This group (M4) has 
three transformations: do nothing, up four half-steps, and up eight 
half-steps. The table for this group has the same structure as Z3; it’s 
addition modulo 3.

•	 What happens if we combine M4 with an inversion? This group 
is not commutative. The M4 transformation followed by an 
inversion is not the same thing as the inversion followed by the  
M4 transformation.
o To find a geometrical representation of this requires us to look 

at symmetries on an equilateral triangle. The group table for 
these transformations in geometry is isomorphic to the musical 
group M4.

o Mathematicians call this group the “dihedral group of order 6,” 
and it is the smallest noncommutative group we can construct.

•	 Some mathematical researchers are working to construct musical 
versions of these mathematical groups.
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Symmetry
•	 Group theory is seen as the language of symmetry in mathematics. 

Mathematicians categorize objects by their symmetry group. 

•	 The outline of a violin has only one symmetry. It can be reflected 
over the x axis, but there is no other way to transform that picture 
and get back to the same picture. In contrast, the outline of a barbell 
has three symmetries. It can be reflected over the x axis, reflected 
over the y axis, or rotated 180 degrees. That means the symmetry 
group for the barbell is a copy 
of the Klein four group.

•	 Among the interesting objects 
that can be categorized by 
their symmetry groups are 
frieze patterns. There are just 
seven different symmetries 
on frieze patterns and no 
more. There are exactly 17 
different symmetry groups for 
a wallpaper form. 

•	 In chemistry, group theory 
is used to classify crystal 
structures. In physics, it’s used 
to study subatomic particles. 

Augmentation and Diminution
•	 Yet another transformation in 

music that has this group structure is augmentation and diminution, 
that is, stretching and shrinking by a factor of 2. The augmentation 
of a melody is twice as slow, and the diminution is twice as fast.

•	 We can think about the group structure involved in these 
transformations as follows: Augmentation is taking the inverse of 
diminution. We can also augment as many times as we want, each 
time stretching the notes twice as long; thus, this group is infinite. 

all 17 wallpaper symmetry groups 
appear in the wall mosaics of the 
alhambra in Spain.
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It actually has the same structure as the integers, where the integers 
serve as powers of 2: 2n.

•	 Augmentation and diminution are among the transformations Bach 
was working on in his 14th canon. 
o This canon has four parts: The top voice is supposed to play 

the music as written; the next voice is supposed to play it 
augmented (twice as slow as the original) but also inverted and 
transposed; the next voice is supposed to play it augmented 
again (four times as slow as the original) and transposed again; 
and the bottom voice is supposed to play it augmented yet 
again (eight times as slow as the original) and also inverted  
and transposed. 

o Amazingly, the bottom voice is the original melody from the 
Goldberg variation. 

o As we listen, notice that all the parts are the same in some 
sense, but they’re transformed from the original melody. 

Benson, Music: A Mathematical Offering, chapter 9.

Harkleroad, The Math behind the Music, chapter 4.

1. What are groups, and how are they used to study symmetry 
transformations in mathematics?

2. What are the musical transformations, including inversion, retrograde, 
retrograde inversion, transposition, and augmentation/diminution?

3. How are musical transformations and group theory connected? 

    Suggested Reading

    Questions to Consider
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Self-Reference from Bach to Gödel
Lecture 9

We can point to many different versions of self-reference: talking 
about yourself, looking in a mirror, and using references to a 
work of art in the work itself. Self-reference creates beauty and 

a bit of strangeness in both mathematics and music, and the self-reference 
in these two subjects seems somehow similar. In this lecture, we’ll discuss 
different levels of self-reference, from basic, to intermediate, to advanced, 
looking at both musical and mathematical examples. As we progress on this 
continuum, we’ll see that infinite loops begin to appear, and these loops take 
on stranger meanings. 

Basic Self-Reference
•	 Basic self-reference in classical music is fairly common. Western 

composers like to take snippets of earlier parts of a piece and play 
them later to sort of refer listeners back and keep the parts of the 
piece connected. 
o One of the most popular pieces of all time does this: 

Beethoven’s Ninth Symphony, just before the “Ode to Joy.” 
After an opening raucous blast, Beethoven intersperses a 
vigorous cello line with references to earlier movements. The 
piece quotes earlier parts of itself. 

o Many similar examples of basic self-reference can be found in 
the Western concert music repertoire.

•	 Mathematicians use basic self-references all the time in the form of 
functions—sequences that refer to themselves. Think, for example, 
about the Fibonacci numbers, a sequence that recurs everywhere—
in pinecones, sunflowers, Indian poetry, and much more. Each 
term in the sequence refers back to earlier terms. In mathematical 
notation, the sequence is fn + 1 = fn + fn – 1. The name for this sort 
of self-reference is a “recursively defined function.”
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•	 If we have a function defined on a small interval, say 0, 1, and we 
want to repeat it—we want it to go on and on and do exactly the 
same thing—we write f(x) + 1 = f(x). What is f(2)? It refers back 
to f(1); f(2) is f(1) + 1, and that should be f(1) according to our 
equation. What is f(1.5)? That refers back to f(0.5); f(1.5) is f(0.5) + 
1, which is the same thing as f(0.5).

Intermediate Self-Reference
•	 Basic self-reference in music is a piece referencing itself. 

Intermediate self-reference in music might be a composer 
referencing himself or herself. One of the most famous examples 
of intermediate self-reference in music is Sir Edward Elgar’s  
Enigma Variations.

•	 To understand intermediate self-reference in the work of Bach, we 
need to know a little bit about music in Germany, in particular, the 
system for naming notes. In Germany, our B-flat is indicated with 
a B, and our B is indicated with an H. Thus, in the German system, 
Bach was able to encode his name in his music. We hear examples 
in The Art of the Fugue and the Brandenburg Concerto No. 2.

•	 Other composers have honored Bach in the same way, by writing 
BACH into their music. Still others, including Robert Schumann, 
Franz Schubert, Johannes Brahms, and even Dmitri Shostakovich, 
have also written their names into their music. In some cases, 
if the letters don’t match up with the notes, they use tricks of 
musical nomenclatures or puns to accomplish the self-reference. 
Shostakovich shortened the German form of his name to DSCH, 
used the fact that S in German notation is E-flat, and arrived at D, 
E-flat, C, B.

•	 Here’s a fun math version of intermediate self-reference: If you 
pick an answer at random from the following choices, what is the 
probability that you will be correct? (A) 25 percent, (B) 50 percent, 
(C) 0 percent, or (D) 25 percent. We can see the self-reference here: 
The answer is the probability of picking the correct answer.
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o Each answer is equally likely, so that is a 25 percent chance of 
picking each one. But the 25 percent appears twice; if we pick 
at random, there is a 50 percent chance of picking 25 percent. 
Perhaps the answer should be 50 percent. But 50 percent appears 
only once, and the chance of picking 50 percent is 25 percent. 

o Neither 25 percent nor 50 percent could be correct, so the 
correct answer should be 0 percent. But 0 percent appears only 
once, and there is a 25 percent chance of picking it. No answer 
is the correct percent chance of picking that answer.

o A sneaky way to answer this question would be to write in a 
fifth option: (E) 20 percent.

•	 In some sense, all differential equations are a form of self-
reference. Consider, for example, the differential equation y' = 0.5y. 
This is among the simplest differential equations we could write. 
The equation asks: How quickly does y change? The answer to that 
question is: The change is half the size of y. 
o This equation models something like exponential population 

growth. Think about starting with 100 rabbits, and at every 
time step, half of them reproduce, so at the next time step, we 
have an additional 50 rabbits. Then, with 150 rabbits, at the 
next time step, we get an additional 75 rabbits. 

o The key self-reference here is that the function appears on both 
sides of the equation; it is a function referring to itself.

•	 In an earlier lecture, we looked at the wave equation, which is 
another example of a differential equation (a partial differential 
equation). Recall that u(x,t) represented how far above the median 
line the vibrating string went at position x and time t. Notice that 
u(x,t) occurs on both sides of the equation. It is a form of self-
reference; u is related to itself in this particular way.

•	 Recall that the golden ratio (phi) we discussed in Lecture 5 is like 
pi, a number with special properties, and it is also rational; it cannot 
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be written as a fraction. We usually think of the golden ratio not in 
terms of its continued fraction but as 1 + √5/2, the ratio of the sides 
of pi.
o If we have a rectangle with sides that are exactly on that ratio 

and we remove the largest possible square, the remaining 
rectangle has the same proportions as the original. From that, if 
we remove the largest possible square, the remaining rectangle 
has the same proportions as the original, and so on. 

o If we inscribe a curve inside each one of these squares—roughly 
a quarter circle in each square—we get a logarithmic curve.

•	 We have seen that the golden ratio is 1 + √5/2, but we have also seen 
it as a continued fraction with all 1s. How do we know those two are  
the same? 
o Let x be the continued fraction with all 1s. The denominator is 

just another copy of x. It is just 1 plus a fraction with an infinite 
sequence of further fractions all involving 1s; that is what x is. 
That means that the whole expression x is actually equal to 1 
+ 1/x, the entire expression again. The value x appears on both 
sides of the equation.

o To solve, we multiply both sides by x, and we get x2 = x + 1. 
We then subtract x + 1 from both sides, which leaves us with a 
quadratic equation: x2 – (x – 1) = 0.

o We then apply the quadratic formula:                        , which 
gives us phi: 1 + √5/2.

•	 A geometrical version of self-reference is the Möbius strip. To 
construct one, we take a long strip of paper, which appears to have 
two sides—a front and a back—and we twist it once and fasten the 
ends together. Now, the front side continues on what was the back 
side, which continues back to the front side. The strip has just one 
face and one edge.

− ± −b b ac
a

2 4
2
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o If we cut the Möbius 
strip down the middle 
and keep cutting all the 
way around, we end up 
with a single piece of 
paper that has two faces 
and two edges.

o If we cut it in thirds, we 
get two separate loops 
that are interlocked.

Advanced Self-Reference
•	 Musical examples of 

advanced self-reference are 
rare. One of the few is a “crab 
canon.” This is a duet formed 
by playing a piece of music forward and backward simultaneously. 
Bach wrote one in response to a musical challenge posed by 
Frederick the Great of Prussia in 1746.
o Written out, a crab canon has two parts, but the second 

part is the same as the first played in reverse. In the 
language of transformations, the second part is simply 
the retrograde of the first part. In Bach’s crab canon, the 
second part reads the music retrograde, or from the end to  
the beginning. 

o In a “table canon,” the second part plays retrograde inversion 
from the end to the beginning but inverted—upside down. If 
we were to write out the table canon on one long musical staff, 
we could then represent an infinitely long musical score by 
forming a Möbius strip.

o Canons such as these and those we heard in earlier lectures 
represent the pinnacle of self-reference in music. 

•	 For advanced self-reference in mathematics, we turn to Kurt Gödel.

Self-reference creates beauty and a 
bit of strangeness in the everyday 
world and in mathematics and 
music.
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o In 1910, Alfred North Whitehead and Bertrand Russell 
published Principia Mathematica. Their goal was to provide 
axioms that would give a stable base for mathematics, in much 
the same way that Euclid had done for geometry, except they 
were trying to do this for arithmetic and all of the theorems that 
come with arithmetic. 

o Whitehead and Russell, along with David Hilbert, sought 
axioms that were consistent (so that both a statement and 
its opposite could not be proved) and complete (axioms that 
proved all the true statements). If a statement was true in their 
system, they wanted to make sure it could be proved using just 
the axioms they provided.

o This is a particular view of mathematics that with the right 
axioms, there might be only two kinds of statements in the 
world: true statements, all of which would be provable, and 
false statements, none of which would be provable. Gödel’s 
work ruined the dreams of these mathematicians. 

o The liar’s paradox is a tricky version of self-reference. 
Consider the statement s = This statement is false. It can’t be 
true because the statement says that it is false, and that’s not 
possible. But if s is a false statement, then “This statement is 
false” is false, so the statement must be true. Thus, s can be 
neither true nor false. Gödel used this kind of self-reference to 
burst Whitehead and Russell’s dream.

o Given a set of axioms strong enough to prove basic arithmetic 
truths about the natural numbers, Gödel gave a way of 
producing within that system the statement g = This statement 
is not provable.

o Is g itself provable? It cannot be provable because then the 
statement would be both provable and not provable. That would 
introduce inconsistencies; thus, g is true, exactly because it is 
not provable.
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o Kurt Gödel put this in his 1931 masterpiece, On Formally 
Undecidable Propositions in Principia Mathematica and 
Related Systems, and with this, he destroyed the dreams of 
Whitehead, Russell, Hilbert, and many other mathematicians. 
His first theorem states that no theory strong enough to 
do arithmetic is complete. There are true but unprovable 
statements. His second theorem states that no theory strong 
enough to do arithmetic can prove its own consistency. A 
system might be consistent, but we cannot prove within the 
system that it is consistent.

Hofstadter, Gödel, Escher, Bach.

Nagel, Newman, and Hofstadter, Gödel’s Proof.

1. In what ways is self-reference used by classical composers in their 
music?

2. How did Gödel use self-reference in his work that revolutionized 
mathematics?

    Suggested Reading

    Questions to Consider
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Composing with math—Classical to avant-Garde
Lecture 10

In the last few lectures, we’ve been talking about composing music. 
Scales, rhythms, transformations—these are all important aspects of 
composition, but in each case, the mathematics is sort of embedded; 

it’s implicit. The composers aren’t necessarily thinking about the math, 
although now you know that they really are doing some math. What if the 
mathematics were explicitly used in composition? What would a math-based 
composition sound like? In this lecture, we’ll explore ways to explicitly 
use mathematics and the tools of mathematics to write and analyze music. 
We’ll take a chronological tour through explicit uses of mathematics in 
composition, going from 1600 up to modern times.

Musical Dice
•	 The waltz by Mozart we heard at the beginning of the lecture is an 

example of algorithmic music, produced by a set of rules. It actually 
stems from an 18th-century European tradition called Musikalisches 
Würfelspiel, “musical dice games.” 

•	 The idea was to compose a large number of measures, all in the same 
key, and then to make the measures harmonically interchangeable, 
sort of like puzzle pieces. The players would then write out a chart 
with instructions on exactly how to pick from these measures, and 
musicians would play the music based on the roll of a pair of dice. 
Today, there are online sites that allow you to play a similar game.

•	 To count the number of waltzes Mozart could compose  
with this game, we need to use something called the  
“multiplication principle.”
o A simple version of this is as follows: If you have 3 shirts to 

choose from and 4 pairs of pants, that gives you 12 possible 
outfits (3 × 4 = 12). If you have 3 shirts, 4 pairs of pants, and 2 
belts, you have 24 different outfits. 
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o With Mozart’s algorithmic waltzes, there are 11 choices for 
each of the measures (because the dice can roll anything from 
2 to 11), and there are 16 different measures to choose. That’s 
like having 16 different parts of an outfit; thus, we have 1116, 
which is roughly 4.5 × 1016, or 45 quadrillion. 

o But Mozart did not actually have all those possibilities. Look 
closely at the eighth measure. If you roll a 2, you get measure 
30. If you roll a 3, you get measure 81. If you roll a 4, you get 
measure 24. But when you look at those measures, they are all 
exactly the same. The roll doesn’t matter. 

o You’ll always get the same thing for measure 8. In other words, 
there aren’t 11 ways of choosing measure 8; there is really only 
1 way to choose measure 8. Similarly, with the 16th measure, 
there are really only 2 choices. 

o To incorporate that information into our analysis, we need to 
revise the original number of choices, 1116. Two of those 11s 
become a 1 and a 2, which leaves us with fourteen 11s. The 
number we get is 2 × 1114, or about 759 trillion. 

•	 Is each one of those 759 trillion options equally likely? The answer 
is no because the odds of rolling different combinations of dice are 
different. For example, you have about a 3 percent chance of rolling 
double 1s but an 11 percent chance of rolling a 9 because there are 
more ways to roll a 9 (4 and 5, 5 and 4, 3 and 6, 6 and 3). Thus, 
you’re much more likely to get some measures than others.

•	 Mozart wasn’t the first to compose algorithmic music; the first 
composer to do so was probably Giovanni Andrea Bontempi. 
o In 1660, he wrote something called “A New Method for 

Composing for Four Voices, by means of which one thoroughly 
ignorant of the art of music can begin to compose.” The idea 
was to give people with no composition skills tools to compose 
music. Other composers who used this method included Joseph 
Haydn and C. P. E. Bach, Johann’s son. 
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o These Baroque and classical examples of math-based 
composition are much more tame than what we’ll hear later on. 

The Progression toward Atonality
•	 The 19th century continued the progression toward atonality. As 

you’ll recall, this means having no tonal center, no main key on 
which to begin and end and to return to throughout a composition. 
Composers moved away from reliance on a single scale or multiple 
related scales. By 1900, composers were challenging the notions of 
what music is. 

•	 In 1885, Franz Liszt wrote Bagatelle sans tonalité, “Bagatelle 
with no tonality.” In 1894, Claude Debussy wrote Prelude to the 
Afternoon of a Faun, which again, pushed the boundaries of 
avoiding tonality. 
o This music was not always well-received. In 1913, the premiere 

of Igor Stravinsky’s Rite of Spring sparked a riot in Paris. 

o That composition represents almost the height of this increase 
in dissonance, that is, using intervals that are not prevalent in 
the overtone series. 

•	 The use of dissonance was taken to its logical extreme by Arnold 
Schoenberg with 12-tone music and atonality. 
o Schoenberg was born in Vienna in 1874. He played the violin 

and cello, and by 1909, he had arrived at his ideas for what he 
called “pantonal” music. 

o Schoenberg was working around the same time that cubism 
was emerging in the art world, with the work of Picasso and 
Georges Braque. He was equally revolutionary in terms of his 
composition and performance. 

o In 1920, he teamed with two of his students, Alban Berg and 
Anton Webern, forming the Second Viennese School.
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•	 All music theory up to that point had assumed tonality—a 
foundational note or scale—and by design, some of those notes 
were more prominent than others. Schoenberg had to search to find 
a replacement for the structure that tonality provided, and he found 
it in math. His work used the mathematics that we saw in Lecture 
8, especially the Z12 group, as well as transformations, inversions, 
retrograde, and retrograde inversions. 

•	 Schoenberg’s goal was to avoid any sense of tonality, and his solution 
was to force himself to use all the notes with equal frequency. 
o He started with a tone row using each piano note once. We’re 

thinking about modulo octaves, so he’s using each of the 12 notes 
once, but he hasn’t decided which octave A might come from; C 
could be from any other octave. And he does this in a serial 
way. The tone row is sort of the foundation of a series of tones. 

o In 12-tone music, no tone dominates. That’s why it’s called 
“atonal music.” Schoenberg did this by structure intentionally. 
He actually preferred the word “pantonal,” not atonal, meaning 
a synthesis of all of the keys, not avoiding any one key. 

•	 Let’s see if we can crudely demonstrate Schoenberg’s methods with 
a simple piece. Instead of working with 12 notes, we’ll work with 5 
notes. Mathematically, we’re going to think about working modulo 
5, that is, looking at the remainders when we divide by 5, and those 
would be 0, 1, 2, 3, and 4. 
o We start by randomly ordering those 5 notes—2, 3, 1, 0, 

4—then, we transpose. We start at 0 and add 3 to each one. 
Working modulo 5, we get 3 + 2 = 0, 3 + 3 = 1, 3 + 1 = 4, 3 
+ 0 = 3, and 3 + 4 = 2. That’s our tone row: 0, 1, 4, 3, 2. We 
then write down the inversion of this, the retrograde, and the 
retrograde inversion, and then we have to translate the numbers 
into notes. To do that, we think of A being represented by 0, B 
by 1, and so on up through E, 4. 

o Next, we have to choose such elements as note lengths, 
the octave from which we will pick the notes, and the rests. 
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That gives us a piece of music composed using some of 
Schoenberg’s ideas, although he used all 12 notes and we’ve 
used only 5.

•	 We hear the opening of the fifth piano piece from Schoenberg’s 
Opus 23, Five Pieces for Piano. Remember, his goal was to 
explicitly avoid tonality—the predominance of any single key or 
scale. He did this using a mathematically based tone row system 
to ensure that in every group of 12 notes, each half note appears 
exactly once. Such music places heavy demands on both the 
performer and the audience.

•	 Schoenberg’s system always referred to a starting point, 0. An 
alternative method is to pick a starting note, go up four half-
steps, use that as the reference point, go up two half-steps, use 
that as a reference point, and go down three half-steps, similar to 
bootstrapping. With this system, it’s difficult to tell whether notes 
have been duplicated.
o A Russian math student and music lover named Vladimir Viro 

encoded the musical parts in this alternative to the Schoenberg 
system. He then used a music database to digitize a great 
number of classical compositions and make them searchable. 

o Viro’s database searches only changes and pitch, and it can 
find melodies no matter the key. His mathematical encoding, 
which is very similar to what Schoenberg did, makes the 
search possible.

Aleatory, Spectral, and Computer-Programmed Music
•	 In the 1950s, music took a turn back toward mathematics, 

reintroducing randomness into concert music. This is called 
“aleatory music” or “chance music.” The most famous composer 
of chance music, and possibly the most influential composer of the 
20th century, was John Cage.

•	 Cage was known for his radical experiments. He wrote pieces for 
“prepared piano,” where he placed bolts and screws on top of the 
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strings to alter the sounds as 
he played. He composed for 
dance accompaniment with 
Merce Cunningham’s group. 
He composed based on James 
Joyce’s Finnegan’s Wake. 
He composed for melting ice 
sculptures. He composed a 
piece called Organ/ASLSP 
(“as slow as possible”); one 
performance of this piece 
began in 2001 and is scheduled 
to end in 2640. 

•	 Perhaps Cage’s most famous 
piece is 4'33" (“4 minutes and 
33 seconds”). This is a piece 
with no notes. It’s written for 
piano in three movements, 
and it’s timed. The pianist is 
supposed to sit at the piano for 
three movements that add up to 4 minutes and 33 seconds. This 
work seems to be a musical version of the mathematical concept 
of 0.

•	 Cage began composing chance music around 1950, making a 
transition from creation to acceptance—accepting the results of 
chance. He also gave the performer a degree of uncertainty and 
randomness. Some compositions require the performer to do 
random things and play based on the results.
o This kind of composition introduces mathematical questions. 

What kind of randomness is Cage using? What is the sample 
space? When we were talking about Mozart’s dice game, there 
was a sample space where 7 and 9 were more likely than 2 or 
12. One of the sample spaces Cage used was a Chinese text 
called the Yijing, the “Book of Changes.”

Wind chimes play a version of 
aleatory music, in which pitches 
are chosen at random by the 
wind.
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o Cage would compose based on the charts of the Yijing, 
choosing pitches, rhythms, tempo, and so on. One of the results 
was a 1951 piece called Music of Changes.

o In 1961 and 1962, he used the randomness of star charts to 
compose Atlas Eclipticalis. In 1983, he used the particular 
rock formation in the Zen temple in Kyoto, Japan, the 
Ryoanji Temple. 

o Other composers stretched the idea of randomness even further. 
Charles Dodge, for example, composed a piece called Earth’s 
Magnetic Field, in which the pitch changes were taken from the 
changes in the earth’s magnetic field resulting from solar winds. 

•	 Spectral music comes from a European tradition of trying to create 
the spectrum. Recall from Lecture 2 that the spectrum showed us 
how much of each overtone we would hear. Mathematically, it was 
the Fourier transform of the wave form that gave us the spectrum. 
In Gérard Grisey’s Périodes, seven instruments were used to re-
create the spectrum of a trombone. 

•	 Many programmers are using computers these days to compose 
program music. One of the most prolific is David Cope, who 
has done extensive work in this field, including work to emulate 
Mozart. The algorithms he uses range from fairly simple to highly 
complicated, bordering on the field of artificial intelligence.

Using Math to Analyze Music
•	 Music theorists have used mathematics in many different fields to 

analyze music. Some of the most interesting results here come from 
the recent work of Princeton’s Dmitri Tymoczko, who is working on 
the geometry of music, in particular the geometry of two-note chords.

•	 The geometry of a one-note chord is fairly simple. Remember that 
the notes run from A all the way through G-sharp, and then the next 
A is really the same thing as the original A if we’re thinking modulo 
octave. Thus, the geometry of a one-note chord is a circle. 
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•	 If we had two notes, we would get two coordinates, so we would have 
A, A-sharp, B laid out on the x coordinate and A, A-sharp, B on the y 
coordinate. Each two-note chord would be a spot on a 12 × 12 grid. 
o If we had a chord with G and C, physically, we would have 

many options for playing that because we could pick the G and 
C from any octave we wanted, but those would all be examples 
of a G, C two-note chord. 

o What happens if we wrap this into a circle, as we did for the 
one-note chords? At first, we might think that the two-note 
chords form a torus, but when we eliminate redundancy in the 
chords, we find that we get a Möbius strip.

•	 Tymoczko’s work shows us that the space of two-note chords has 
the geometry of a Möbius strip, and any sequence of two-note 
chords is really just a path along the Möbius strip. This is a new 
way to visualize and study music. 

Forte, The Structure of Atonal Music.

Harkleroad, The Math behind the Music, chapters 5–6.

Lewin, Generalized Musical Intervals and Transformations.

Loy, Musimathics, vol. 1, chapter 9.

Perle, Serial Composition and Atonality.

Wright, Mathematics and Music, chapter 6.

1. How have the ideas of probability been used by composers, both in the 
classical era and in modern times?

2. How did the atonal and 12-tone composers ensure that their compositions 
didn’t accidentally become tonal?

    Suggested Reading

    Questions to Consider
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The Digital Delivery of music
Lecture 11

In the course of these lectures, we’ve talked about vibrating objects and 
their overtones, and we’ve seen how to construct scales and cords. We 
then used that knowledge to find some compositional techniques that use 

mathematics. But how does music get to our ears? In this lecture, we will 
talk about an important but underappreciated subject: the digital delivery of 
music and the mathematics of that process. Specifically, we’ll look at three 
ways that mathematics has changed the delivery of music in our digital 
world: the notes we hear, the number of songs we can fit into a smaller 
space, and how much cleaner music sounds now than it did in the early days 
of recording.

Delivery of Music
•	 The original delivery of music was only in person. Before about 

the time of the U.S. Civil War, no music had ever been recorded 
to be played back later. People traveled to hear concerts and had 
only two or three chances in their lifetimes to hear such works as 
Beethoven’s Ninth Symphony.

•	 The first known musical recording was not from Edison but 
from Édouard-Léon Scott de Martinville singing “Clair de la 
Lune” in 1860. It was written to paper by something called a 
“phonautograph.” This recording was not heard in sound until 
2008, when it was reconstructed from lines drawn on this paper. 
The first music recorded onto a replayable cylinder was Handel’s 
Israel in Egypt, recorded in 1888 for Edison. 

•	 The move from cylinders to flat discs around 1890 made it possible 
to produce multiple copies of a recording. With this development 
came the rise of gramophone companies. Radio broadcasts of live 
music started around 1906 to 1910, and recording and playback 
quality quickly improved.



93

•	 Earlier technologies for recording sound resulted in degradation of 
the recorded media. Modern CDs don’t degrade over time, but the 
manufacturing process for CDs introduces more than 10 errors per 
second on a disk—50,000 errors! Even so, most CDs sound fine 
when we play them.

The Mathematics of Pitch Correction
•	 Auto-Tune was invented by 

Antares Audio Technologies 
in 1997. It was first heard 
widely on Cher’s album 
Believe. The idea behind 
Auto-Tune was to provide 
a digital fix for out-of-tune 
singing. The process involves 
two steps: pitch detection and 
pitch correction. 

•	 For pitch detection, there 
are several options. Looking 
at the Fourier transform, 
we can see where the first 
peak is; that should be the 
fundamental frequency. 
The distance between the peaks also gives us the fundamental 
frequency, because they represent the fundamental frequency added 
to itself. If we wanted to stay on the wave form side, we could look 
at the distance between the wave repeating; that period should give 
us 1/frequency.

•	 Once we have done the pitch detection and we know a singer is 
singing at, say, 430 Hz, we can ask whether the frequency should 
be something else. In other words, is the singer out of tune? If we 
know that an A natural should be about 440, we can correct that 
note upward a bit.

Victrolas and other gramophones 
were entirely mechanical, requiring 
no electricity to play.
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•	 But we can’t just shift the graph over 10 Hz because if the singer is 
singing at 430 Hz, we are also hearing the overtones at 860, 1290, 
1720, and so on, when we should be hearing 880, 1320, and so on. 
o The key to remember here is that intervals are multiplicative, 

not additive, and that tells us how to get our solution. 

o To do the pitch correction, we should multiply, not add. To get 
from 430 to 440, we need to multiply by 44/43.

•	 Here’s the process for auto-tuning we have so far: We start with a 
wave form. We compute the spectrum, we detect the frequency, we 
compare that with a table of correct frequencies, we multiply by a 
constant, and then we invert. We have to take the inverse Fourier 
transform to get back to the wave form. Now, we can simply play 
that corrected sound. In theory, we could adjust the tune of anything 
with this process, although in practice, it’s a bit more complicated.

The Mathematics of Audio Compression
•	 If we recorded sound at its highest fidelity on a CD, the CD would 

hold less than two minutes of music. The problem here is that recorded 
audio and video simply contain too much information. The goal of 
audio compression is to reduce this amount of stored information 
while still minimizing the effect on the listening experience.

•	 The Victrola used a groove that was modeled on the wave form, so 
that when the needle went through the groove, it vibrated exactly as 
the wave form did. Digital audio uses 0s and 1s, but it’s necessary 
to convert from a continuous wave form to discrete points that can 
be represented in this way. That process is called “sampling.”

•	 Sampling a wave form involves identifying a number of points and 
deciding how tightly to space the points on the wave. More points 
gives a better sound, but fewer points reduces the size of the file for 
more storage.

•	 The mathematics needed for this sampling is called the Nyquist 
theorem, proved by Harry Nyquist in 1928. What Nyquist proved 
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is that if we sample at frequency f, so that we are putting points 
every 1/f seconds, we will save information on all waves that have 
a frequency of less than f/2. If we think about this in terms of the 
Fourier transform, we will retain all the information on frequencies 
that are less than half of the frequency we are sampling.

•	 The limit of human hearing is about 20,000 Hz. The Nyquist 
theorem tells us that if we sample at more than 40,000 Hz, we 
will accurately reproduce all sounds that are less than 20,000 Hz. 
The common sampling rate for audio CDs is actually 44,100 times  
per second.

•	 We still need to decide what vertical levels we will sample. How 
many levels can we actually distinguish? The rate that has been 
determined for CDs is 16 bits, which doesn’t sound like much. But 
if we have sixteen 0s and 1s, that gives us 216 different levels, or 
65,000 levels at which we can sample.

•	 Once we know how many samplings per second we need to do and 
what the possible output levels are, that information gives rise to 
the bit rate—how much data per second of music. If we want CD-
quality sound, we need 1400 kilobits per second, that is, 1.4 million 
0s and 1s in each second of music.

•	 To make the file size even smaller, MP3 compression is used. 
MP3 uses perceptual coding, retaining the parts of the data that 
people are likely to notice and dropping the parts that people are 
unlikely to notice. This is an area called psychoacoustics, which 
looks at such issues as the threshold of hearing. Perceptual audio 
compression is a very complicated subject. It’s also a great example 
of the intersection of different fields, in this case, math, music, 
psychology, and computer science.

The Mathematics of CD Encoding
•	 As mentioned at the beginning of the lecture, even a new CD can 

have about 50,000 errors, yet it still sounds fine when we play it. 
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What’s used to address the error issue in manufacturing CDs is the 
Cross-Interleaved Reed-Solomon Code (CIRC). 

•	 A sales representative taking an order on the phone from a customer 
knows immediately whether or not the customer has read his or her 
credit card number correctly. How? 
o The representative’s computer performs a series of calculations 

that must result in a multiple of 10 to verify that the correct 
credit card number has been entered. Using 10 as a credit card 
check digit catches 70–80 percent of all errors made in entering 
credit card numbers.

o Similar check digits are used on airplane tickets, UPCs, bank 
routing numbers, ISBNs on books, and vehicle identification 
numbers. Internet communication includes check digits in the 
packets of information sent back and forth.

•	 Once errors are detected in this way on a CD, they need to be 
corrected. To understand the error correction process, we need to go 
back to 1947 and the work of Richard Hamming at Bell Labs.
o Hamming developed a system to detect and correct errors on 

a very early computer. In his system, only four out of every 
seven pieces of data were true data; the other three were  
check digits.

o Imagine that we are sending a digital message of 1, 0, 1, 1, 
and we are going to append three digits to the end. We put the 
original four digits into four regions on a chart, and then we 
add digits in regions 5–7 in such a way that each circle has an 
even number of 1s. That gives us our check digits, 0, 1, and 0, 
and we can now put all seven digits in order; the message block 
reads: 1011010.

o The person on the receiving end of the message can put those 
numbers into the same chart to determine whether or not there 
was an error in transmission and, if so, how to correct it.
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o Not every sequence of seven 0s and 1s is a valid block, but 
how different are two valid blocks? What is the distance 
between two valid blocks as measured by the number of digits 
by which they differ? The answer is always three or more. In 
our example, the distance between what was sent and what 
was received was only one, and because of that, we knew the 
message had to be wrong.

o The 7-4 Hamming code has a message length of four set inside 
a block length of seven. That gives an information rate of 4/7; 
about 57 percent of the digits that are sent are actual data, and 
the others are check digits. This particular system can check 
one error and correct one error. An extended Hamming code 
enables checking for two errors and correcting for one.

•	 The next step in encoding a CD is called interleaving. A scratch on 
a CD may corrupt a number of 0s and 1s in a row, and the solution 
to avoid losing that bit of music is to intersperse the data from any 
one moment in the music in a number of different places on the 
CD. We see an example of interleaving with the message “Math is 
my favorite.” A further example shows how the Hamming code and 
interleaving can be used to correct a message with a transmission 
error rate of 20 percent.

•	 Instead of using a Hamming code, manufacturers of CDs actually 
use what’s called a Reed-Solomon code. This code replaces the 
single digits that we were just talking about with groups of eight 
digits. Because of that, a Reed-Solomon code is really working in 
a particular group, a field called Z256. The resulting Reed-Solomon 
code can detect up to three errors and correct up to two errors.

•	 How good is this system? As we said, it results in about 50,000 
errors on a disk—but that’s out of about 20 billion bits!

•	 Mathematics is encoded somewhere in all of the ways that we 
deliver music digitally now. And these ideas are not just used for 
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CDs but for communicating in deep space missions, receiving 
satellite TV, and storing data on your hard drive.

Benson, A Mathematical Offering, chapter 7.

Loy, Musimathics, vol. 2, chapter 1.

Pohlmann, Principles of Digital Audio.

1. How are mathematical tools, such as the Fourier transform, used to 
correct singers’ pitch and compress digital music?

2. What are error-correcting codes, and how do they ensure that scratched 
CDs still play without problems?

    Suggested Reading

    Questions to Consider
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math, music, and the mind
Lecture 12

Throughout these lectures, we have looked at a central question: How 
can mathematics help us understand music? And we’ve seen a great 
deal of evidence for connections between math and music: vibrations, 

scales, compositional techniques, and so on. In this final lecture, we’re 
going to look at deeper connections; we’ll refer back to everything we’ve 
learned—all the details—but to make a larger point: The connections we 
make between mathematics and music are in our minds.

Differences between Math and Music
•	 Mathematics and music are clearly not the same thing. What aspects 

of music are completely nonmathematical?

•	 Although computers can generate melodies using mathematical 
algorithms, real musical composition is not mathematical. The 
results of computer composition have no themes or coherence.

•	 The Fourier transform can explain how the overtones of an oboe 
are different from those of a clarinet, but orchestrating a melody—
deciding which instruments should play which parts—is a 
nonmathematical art.

•	 Mathematics can guide us in tuning a piano and predict the sounds 
that will come out when we hit the keys, but math cannot tell a 
pianist how hard to strike each note or how the tempo of a piece 
should ebb and flow.

•	 Of course, there are also some things that math does that music 
simply can’t. Virtually all scientific advances rely on some form 
of mathematics, and music cannot make that claim at all. Music 
can and should be seen as the pinnacle of civilization’s creative 
works, along with other arts, but it isn’t useful in the same way that 
mathematics frequently is.
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•	 Music also seems much more accessible than mathematics. 
Everybody likes some form of music, even if they don’t understand 
it or can’t play it themselves. Of course, the same can’t be said  
for mathematics.

Infant and Child Development
•	 Almost from birth, infants start to think both mathematically 

and musically. For example, when babies are just three or four 
days old, they can distinguish three dots from two dots. This 
is evidence of “subitizing,” that is, instantly counting without 
counting individual items.

•	 By about five months, infants can do basic addition, recognizing 
that 1 + 1 = 2. In experiments at the Infant Cognition Center at 
Yale University, babies have been shown to look longer at a screen 
that shows only one doll when two were expected. Older infants 
differentiate both between the items shown (a doll versus a block) 
and the number of items shown. 

•	 Some mathematical capabilities seem to be innate or nearly innate, 
but what about music? Conditioned head-turning experiments in 
the United Kingdom have shown that infants seem to have early 
preferences for fast, loud, and familiar music. Additional research 
has shown that even after a year, babies preferred music they had 
heard in the womb over similarly styled and tempoed music. 

•	 Infant brains are structured in ways that allow them to process these 
fundamentally important aspects of both math and music—even 
before they can use language or walk. The brain somehow comes 
wired to process, to remember, and maybe even to understand both 
math and music.

Patterns and Prodigies
•	 Our brains are marvelous at pattern matching and pattern predicting, 

and these abilities are at the core of both mathematics and music. 
One area in which we see the importance of pattern matching is 
with prodigies, children who perform at an adult level in a given 
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field. Note that we often associate prodigies with three fields: 
music, math, and chess.
o In music, we have such prodigies as Mozart and, more recently, 

the cellist Yo-Yo Ma and the violinists Hillary Hahn and  
Sarah Chang. 

o In math, we have Srinivasa Ramanujan, who grew up in poor 
conditions in India and eventually moved to England to work 
with the most renowned mathematicians in the world. John von 
Neumann, another famous mathematician, was also a great 
prodigy. The Teaching Company’s own Art Benjamin was 
something of a child prodigy, as well.

o In chess, the most famous child prodigy was Bobby Fischer, 
but other children have become grand masters at even younger 
ages than Fischer. 

•	 What is it that math, music, and chess have in common that seems 
to engender prodigies? The answer may be: patterns.
o When you’re listening to music, your mind is continuously 

predicting what is next, and it does that based on what you 
have just heard in that piece, what you have heard before in 
pieces of the same style, and so on. 

o Mathematical patterns are usually more explicit. Some of them 
we know well—1, 2, 3, 4, 5—and we know what comes next. 
The Fibonacci sequence was a pattern we needed in order to 
understand octave: 1, 1, 2, 3, 4, 5, 8, 13…. The pattern 2, 3, 5, 
7, 11, 13, 17… is the primes in order, the numbers that have 
only 1 and themselves as divisors.

o Sometimes, simple patterns lead to difficult mathematics. For 
example, Goldbach’s conjecture says that every even number 
can be written as the sum of two primes. This statement has 
been checked with computers up to extremely large numbers, 
but we do not know that it is always true.
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•	 The combination of musical and mathematical patterns results in 
something like the work of David Cope, which is at the boundary 
between music and artificial intelligence. 
o Cope has written computer programs that will compose melodies 

in the style of certain composers or predict melodies based on 
rules about continuing patterns. In emulating Mozart, Cope’s 
program gets between 64 and 71 percent of the notes correct.

o This work tells us that when we predict the end of a musical 
phrase, we are doing mathematical thinking. It’s a mathematical-
style algorithm that does this prediction of patterns.

Practice
•	 The need to practice is another feature that is shared by both math 

and music. The psychologist K. Anders Ericsson at Florida State 
University has noted that it takes about 10,000 hours of practice to 
become an expert in any endeavor. 

Psychologists estimate that it takes about 10,000 hours of practice—3 hours a 
day for 10 years—to become an expert in any endeavor.
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•	 One of the keys to Ericsson’s theory is that it is not just practice that 
is required—not just mindless repetition—but deliberate practice, 
time spent breaking down, assessing, and refining one’s craft. 

•	 Again, it seems as if people can imagine musicians practicing much 
more easily than they can mathematicians. For most mathematicians, 
practice consists of pondering puzzles and mathematical ideas, 
playing games that require strategic thinking or geometrical 
reasoning, and asking questions of their favorite teachers. Practicing 
math is not so constrained as other types of practice.

•	 Of course, there are limits to the argument about gaining expertise 
through 10,000 hours of practice. Most of us couldn’t get in the 
NBA, even with 1 million hours of basketball practice!

Creativity
•	 Both mathematics and music have elements of creativity, and 

this creativity in the two disciplines seems similar. In both cases, 
practitioners work within structured systems that have patterns. 
o On the musical side, the system includes scales, keys, and 

tempos. On the mathematical side, it includes definitions  
and logic.

o Further, both mathematicians and musicians try to construct 
something new and original, and if they succeed, what they 
create is studied and emulated by others.

•	 One of the implications of creativity in these fields is that we 
will never run out of math or music. In fact, we can actually use 
mathematics to quantify the fact that we will never run out of music. 
o How many 10-note melodies can we create with just 12 notes 

and three note lengths? The answer is 3610 different melodies. 

o It would take 1 million songwriters writing 1,000 melodies 
a day for more than 10,000 years to write out all of  
those melodies.
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•	 Which endeavor is more creative? Of course, we can’t answer that 
question. But whether you are playing well with a string quartet 
or attacking a math problem from a new direction, the sense of 
creativity is exhilarating. 

Abstractness
•	 In addition to patterns and creativity, math and music share the 

curious trait of abstractness. Both can be expressed intrinsically, 
and in both, there is no necessary reference to the natural world, 
although that reference may be present. 

•	 The fact that 5 is a prime number is independent of any part of our 
physical reality. So is the fact that Beethoven’s Fifth Symphony 
exists. Even if all the copies of Beethoven’s Fifth were destroyed, it 
would still exist in our minds.

•	 In some sense, music is the most abstract of the arts and math is 
the most abstract of the sciences. The arts, with some exceptions, 
largely refer to the human experience. The sciences study physical 
objects. But both mathematics and music are built around  
abstract patterns.

Beauty
•	 Musical beauty seems fairly identifiable. When you hear a soprano 

soaring through an aria, it evokes a sense of beauty that somehow 
reaches in and touches your soul. Many people also know that there 
are different styles of musical beauty: Renaissance music, Baroque, 
classical, Romantic, and so on.

•	 What most people don’t know is that mathematics has different 
styles also; it has different aesthetic sensibilities. 
o Mathematicians who study logic—sets, relations, and so on—

are sort of like Baroque purists, playing period instruments and 
making sure that the A they use is not today’s 440 A but the A 
of that particular period.
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o Topologists, the mathematicians who study rubber-sheet 
geometry, give loose, imprecise proofs, similar to the fluid 
rhythms of Chopin or Debussy.

o Those who study abstract algebra—group theory—and write 
amazingly perfect proofs are more like Beethoven, who spun 
his melodies into perfect symphonies. 

o The category theorists are the most abstract of mathematicians. 
Their thinking about such abstract concepts as functions is akin 
to the work of the atonal and pantonal composers, who work in 
their own cerebral worlds.

•	 We end with the Bach Chaconne that we discussed in Lecture 1. As 
you listen, think about the fact that math tells us what sounds will 
emanate from a vibrating string. Think about the chords constructed 
in part because of the mathematics behind the tuning systems used 
in Bach’s time. Think about how scales are constructed using 
mathematical principles and Bach’s use of ideas akin to group 
theory to transform melodies and put them together. Listen, in other 
words, for how mathematics informs the musical experience.

Harkleroad, The Math behind the Music, chapter 9.

Lakoff and Núñez, Where Mathematics Comes From.

Levitin, This Is Your Brain on Music.

Rothstein, Emblems of Mind.

Sacks, Musicophilia.

    Suggested Reading
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1. In what ways are the types of thinking done in mathematics and music 
similar? In what ways are they different?

2. In what ways are the abstractness and beauty of mathematics and music 
similar? In what ways are they different?

    Questions to Consider
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Bibliography

Five of the books in this bibliography have been written as textbooks 
for Math and Music courses or “complete” views of mathematics 
and music and provide excellent additional resources for many of the 

topics covered in this course. Of these, Wright’s Mathematics and Music and 
Harkleroad’s The Math behind the Music are the most accessible, with the 
former reading more like a textbook (it assumes no mathematical or musical 
background but explains concepts quite quickly) and the latter as more of a 
general-interest book. 

Three other volumes are significantly more technical and assume 
mathematical knowledge at roughly an undergraduate-degree level. Of 
these, Forster’s Musical Mathematics is the least mathematically technical 
because the author brings the perspective of an instrument maker and 
focuses on the physics of instruments and the scales that can be played as a 
result. Unlike Forster’s book, Benson’s A Mathematical Offering does delve 
into mathematical compositional techniques in relatively readable manner. 
Loy’s two-volume Musimathics is the most complete reference in existence 
for connections between mathematics and music from a mathematics or 
physics perspective; it includes significant material on signal processing and 
the electronics of digital sound production.

In terms of these five texts, here is a quick guide to how the lecture material 
matches up with the chapters:
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