Musical Mathematics
ON THE ART AND SCIENCE OF ACOUSTIC INSTRUMENTS

Cris Forster
MUSICAL MATHEMATICS
ON THE ART AND SCIENCE OF ACOUSTIC INSTRUMENTS
MUSICAL MATHEMATICS
ON THE ART AND SCIENCE OF ACOUSTIC INSTRUMENTS

Text and Illustrations

by Cris Forster
In Memory of Page Smith

my enduring teacher

And to Douglas Monsour

our constant friend
I would like to thank the following individuals and foundations for their generous contributions in support of the writing, designing, and typesetting of this work:

Peter Boyer and Terry Gamble-Boyer
The family of Jackson Vanfleet Brown
Thomas Driscoll and Nancy Quinn
 Marie-Louise Forster
 David Holloway
Jack Jensen and Cathleen O’Brien
 James and Deborah Knapp
Ariano Lembi, Aidan and Yuko Fruth-Lembi
Douglas and Jeanne Monsour
Tim O’Shea and Peggy Arent
 Fay and Edith Strange
Charles and Helene Wright

Ayrshire Foundation
Chrysalis Foundation
The jewel that we find, we stoop and take’t,
Because we see it; but what we do not see
We tread upon, and never think of it.

W. Shakespeare
For more information about
Musical Mathematics: On the Art and Science of Acoustic Instruments
please visit:

https://chrysalis-foundation.org

https://www.amazon.com
CONTENTS

Foreword by David R. Canright v
Introduction and Acknowledgments vii
Tone Notation ix
List of Symbols xi

CHAPTER 1 MICA MASS 1
Part I Principles of force, mass, and acceleration 1
Part II Mica mass definitions, mica unit derivations, and sample calculations 14
Notes 24

CHAPTER 2 PLAIN STRING AND WOUND STRING CALCULATIONS 27
Part I Plain strings 27
Part II Wound strings 36
Notes 41

CHAPTER 3 FLEXIBLE STRINGS 44
Part I Transverse traveling and standing waves, and simple harmonic motion in strings 44
Part II Period and frequency equations of waves in strings 54
Part III Length, frequency, and interval ratios of the harmonic series on canon strings 59
Part IV Length, frequency, and interval ratios of non-harmonic tones on canon strings 69
Part V Musical, mathematical, and linguistic origins of length ratios 79
Notes 94

CHAPTER 4 INHARMONIC STRINGS 98
Part I Detailed equations for stiffness in plain strings 98
Part II Equations for coefficients of inharmonicity in cents 108
Part III General equations for stiffness in wound strings 113
Notes 115

CHAPTER 5 PIANO STRINGS VS. CANON STRINGS 118
Part I Transmission and reflection of mechanical and acoustic energy 118
Part II Mechanical impedance and soundboard-to-string impedance ratios 120
Part III Radiation impedance and air-to-soundboard impedance ratios 126
Part IV Dispersion, the speed of bending waves, and critical frequencies in soundboards 130
Part V Methods for tuning piano intervals to beat rates of coincident string harmonics 135
Part VI Musical advantages of thin strings and thin soundboards 141
Notes 143
CHAPTER 6 BARS, RODS, AND TUBES

Part I Frequency equations, mode shapes, and restoring forces of free-free bars
Part II Free-free bar tuning techniques
Part III Frequency equations, mode shapes, and restoring forces of clamped-free bars
Part IV Clamped-free bar tuning techniques
Notes

CHAPTER 7 ACOUSTIC RESONATORS

Part I Simple harmonic motion of longitudinal traveling waves in air
Part II Equations for the speed of longitudinal waves in solids, liquids, and gases
Part III Reflections of longitudinal traveling waves at the closed and open ends of tubes
Part IV Acoustic impedance and tube-to-room impedance ratio
Part V Longitudinal pressure and displacement standing waves in tubes
Part VI Length and frequency equations of tube resonators
Part VII Theory of cavity resonators
Part VIII Cavity resonator tuning techniques
Notes

CHAPTER 8 SIMPLE FLUTES

Part I Equations for the placement of tone holes on concert flutes and simple flutes
Part II Equations for analyzing the tunings of existing flutes
Part III Suggestions for making inexpensive yet highly accurate simple flutes
Notes

CHAPTER 9 THE GEOMETRIC PROGRESSION, LOGARITHMS, AND CENTS

Part I Human perception of the harmonic series as a geometric progression
Part II Logarithmic processes in mathematics and human hearing
Part III Derivations and applications of cent calculations
Part IV Logarithmic equations for guitar frets and musical slide rules
Notes

CHAPTER 10 WESTERN TUNING THEORY AND PRACTICE

Part I Definitions of prime, composite, rational, and irrational numbers
Part II Greek classifications of ratios, tetrachords, scales, and modes
Part III Arithmetic and geometric divisions on canon strings
Part IV Philolaus, Euclid, Aristoxenus, and Ptolemy
Part V Meantone temperaments, well-temperaments, and equal temperaments
Part VI Just intonation
Notes

CHAPTER 11 WORLD TUNINGS

Part I Chinese Music
Notes
CHAPTER 12 ORIGINAL INSTRUMENTS

Stringed Instruments:
Chrysalis 788
Harmonic/Melodic Canon 790
Bass Canon 800
Just Keys 808

Percussion Instruments:
Diamond Marimba 824
Bass Marimba 826

Friction Instrument:
Glassdance 828

Wind Instruments:
Simple Flutes 833

CHAPTER 13 BUILDING A LITTLE CANON

Parts, materials, labor, and detailed dimensions 834

Epilog by Heidi Forster 839
Plate 13: Cris Forster with Chrysalis 857
Plate 14: Heidi Forster playing Glassdance 858
Plate 15: David Canright, Heidi Forster, and Cris Forster 859
Plate 16: Chrysalis Foundation Workshop 860

Bibliography for Chapters 1–9 861
Bibliography for Chapter 10 866
Bibliography for Chapter 11 871
Bibliography for Chapter 12 877

Appendix A: Frequencies of Eight Octaves of 12-Tone Equal Temperament 879
Appendix B: Conversion Factors 880
Appendix C: Properties of String Making Materials 882
Appendix D: Spring Steel Music Wire Tensile Strength and Break Strength Values 884
Appendix E: Properties of Bar Making Materials 885
Appendix F: Properties of Solids 888
Appendix G: Properties of Liquids 890
Appendix H: Properties of Gases 892

Index 895
Foreword

I met Cris Forster more than thirty years ago. Shortly thereafter, I saw him perform *Song of Myself*, his setting of Walt Whitman poems from *Leaves of Grass*. His delivery was moving and effective. Several of the poems were accompanied by his playing on unique instruments — one an elegant box with many steel strings and moveable bridges, a bit like a koto in concept; the other had a big wheel with strings like spokes from offset hubs, and he rotated the wheel as he played and intoned the poetry. I was fascinated.

Since that time, Cris has built several more instruments of his own design. Each shows exquisite care in conception and impeccable craftsmanship in execution. And of course, they are a delight to hear. Part of what makes them sound so good is his deep understanding of how acoustic musical instruments work, and part is due to his skill in working the materials to his exacting standards.

But another important aspect of their sound, and indeed one of the main reasons Cris could not settle for standard instruments, is that his music uses scales and harmonies that are not found in the standard Western system of intonation (with each octave divided into twelve equal semitones, called equal temperament). Rather, his music employs older notions of consonance, which reach back as far as ancient Greek music and to other cultures across the globe, based on what is called just intonation. Here, the musical intervals that make up the scales and chords are those that occur naturally in the harmonic series of overtones, in stretched flexible strings, and in organ pipes, for example.

In just intonation, the octave is necessarily divided into unequal parts. In comparison to equal temperament, the harmonies of just intonation have been described as smoother, sweeter, and/or more powerful. Many theorists consider just intonation to be the standard of comparison for consonant intervals. There has been a resurgence of interest in just intonation since the latter part of the twentieth century, spurred by such pioneers as Harry Partch and Lou Harrison. Even so, the community of just intonation composers remains comparatively quite small, and the subset of those who employ only acoustic instruments is much smaller still. I know of no other living composer who has created such a large and varied ensemble of high-quality just intoned acoustical instruments, and a body of music for them, as Cris Forster.

Doing what he has done is not easy, far from it. The long process of developing his instruments has required endless experimentation and careful measurement, as well as intense study of the literature on acoustics of musical instruments. In this way Cris has developed deep and rich knowledge of how to design and build instruments that really work. Also, in the service of his composing, Cris has studied the history of intonation practices, not only in the Western tradition, but around the world.

This book is his generous offering of all that hard-earned knowledge, presented as clearly as he can make it, for all of you who have an interest in acoustic musical instrument design and/or musical scales over time and space. The unifying theme is how mathematics applies to music, in both the acoustics of resonant instruments and the analysis of musical scales. The emphasis throughout is to show how to use these mathematical tools, without requiring any background in higher mathematics; all that is required is the ability to do arithmetic on a pocket calculator, and to follow Cris’ clear step-by-step instructions and examples. Any more advanced mathematical tools required, such as logarithms, are carefully explained with many illustrative examples.

The first part of the book contains practical information on how to design and build musical instruments, starting from first principles of vibrating sound sources of various kinds. The ideas are explained clearly and thoroughly. Many beautiful figures have been carefully conceived to illuminate the concepts. And when Cris gives, say, formulas for designing flutes, it’s not just something he read in a book somewhere (though he has carefully studied many books); rather, you can be
Sure it is something he has tried out: he knows it works from direct experience. While some of this information can be found (albeit in a less accessible form) in other books on musical acoustics, other information appears nowhere else. For example, Cris developed a method for tuning the overtones of marimba bars that results in a powerful, unique tone not found in commercial instruments. Step-by-step instructions are given for applying this technique (see Chapter 6). Another innovation is Cris’ introduction of a new unit of mass, the “mica,” that greatly simplifies calculations using lengths measured in inches. And throughout Cris gives careful explanations, in terms of physical principles, that make sense based on one’s physical intuition and experience.

The latter part of the book surveys the development of musical notions of consonance and scale construction. Chapter 10 traces Western ideas about intonation, from Pythagoras finding number in harmony, through “meantone” and then “well-temperament” in the time of J.S. Bach, up to modern equal temperament. The changing notions of which intervals were considered consonant when, and by whom, make a fascinating story. Chapter 11 looks at the largely independent (though sometimes parallel) development of musical scales and tunings in various Eastern cultures, including China, India, and Indonesia, as well as Persian, Arabian, and Turkish musical traditions. As far as possible, Cris relies on original sources, to which he brings his own analysis and explication. To find all of these varied scales compared and contrasted in a single work is unique in my experience.

The book concludes with two short chapters on specific original instruments. One introduces the innovative instruments Cris has designed and built for his music. Included are many details of construction and materials, and also scores of his work that demonstrate his notation for the instruments. The last chapter encourages the reader (with explicit plans) to build a simple stringed instrument (a “canon”) with completely adjustable tuning, to directly explore the tunings discussed in the book. In this way, the reader can follow in the tradition of Ptolemy, of learning about music through direct experimentation, as has Cris Forster.

David R. Canright, Ph.D.
Del Rey Oaks, California
January 2010
Introduction and Acknowledgments

In simplest terms, human beings identify musical instruments by two aural characteristics: a particular kind of sound or timbre, and a particular kind of scale or tuning. To most listeners, these two aspects of musical sound do not vary. However, unlike the constants of nature — such as gravitational acceleration on earth, or the speed of sound in air — which we cannot change, the constants of music — such as string, percussion, and wind instruments — are subject to change. A creative investigation into musical sound inevitably leads to the subject of musical mathematics, and to a reexamination of the meaning of variables.

The first chapter entitled “Mica Mass” addresses an exceptionally thorny subject: the derivation of a unit of mass based on an inch constant for acceleration. This unit is intended for builders who measure wood, metal, and synthetic materials in inches. For example, with the mica unit, builders of string instruments can calculate tension in pounds-force, or lbf, without first converting the diameter of a string from inches to feet. Similarly, builders of tuned bar percussion instruments who know the modulus of elasticity of a given material in pounds-force per square inch, or lbf/in², need only the mass density in mica/in³ to calculate the speed of sound in the material in inches per second; a simple substitution of this value into another equation gives the mode frequencies of uncut bars.

Chapters 2–4 explore many physical, mathematical, and musical aspects of strings. In Chapter 3, I distinguish between four different types of ratios: ancient length ratios, modern length ratios, frequency ratios, and interval ratios. Knowledge of these ratios is essential to Chapters 10 and 11. Many writers are unaware of the crucial distinction between ancient length ratios and frequency ratios. Consequently, when they attempt to define arithmetic and harmonic divisions of musical intervals based on frequency ratios, the results are diametrically opposed to those based on ancient length ratios. Such confusion leads to anachronisms, and renders the works of theorists like Ptolemy, Al-Fārābī, Ibn Sinā, and Zarlino incomprehensible.

Chapter 5 investigates the mechanical interactions between piano strings and soundboards, and explains why the large physical dimensions of modern pianos are not conducive to explorations of alternate tuning systems.

Chapters 6 and 7 discuss the theory and practice of tuning marimba bars and resonators. The latter chapter is essential to Chapter 8, which examines a sequence of equations for the placement of tone holes on concert flutes and simple flutes.

Chapter 9 covers logarithms, and the modern cent unit. This chapter serves as an introduction to calculating scales and tunings discussed in Chapters 10 and 11.

In summary, this book is divided into three parts. (1) In Chapters 1–9, I primarily examine various vibrating systems found in musical instruments; I also focus on how builders can customize their work by understanding the functions of variables in mathematical equations. (2) In Chapter 10, I discuss scale theories and tuning practices in ancient Greece, and during the Renaissance and Enlightenment in Europe. Some modern interpretations of these theories are explained as well. In Chapter 11, I describe scale theories and tuning practices in Chinese, Indonesian, and Indian music, and in Arabian, Persian, and Turkish music. For Chapters 10 and 11, I consistently studied original texts in modern translations. I also translated passages in treatises by Ptolemy, Al-Kindī, the Ikhwān al-Ṣafāʾ, Ibn Sinā, Stifel, and Zarlino from German into English; and in collaboration with two contributors, I participated in translating portions of works by Al-Fārābī, Ibn Sinā, Šafī Al-Dīn, and Al-Jurjānī from French into English. These translations reveal that all the above-mentioned theorists employ the language of ancient length ratios. (3) Finally, Chapters 12 and 13 recount musical instruments I have built and rebuilt since 1975.

I would like to acknowledge the assistance and encouragement I received from Dr. David R. Canright, associate professor of mathematics at the Naval Postgraduate School in Monterey,
California. David’s unique understanding of mathematics, physics, and music provided the foundation for many conversations throughout the ten years I spent writing this book. His mastery of differential equations enabled me to better understand dispersion in strings, and simple harmonic motion of air particles in resonators. In Section 4.5, David’s equation for the effective length of stiff strings is central to the study of inharmonicity; and in Section 6.6, David’s figure, which shows the effects of two restoring forces on the geometry of bar elements, sheds new light on the physics of vibrating bars. Furthermore, David’s plots of compression and rarefaction pulses inspired numerous figures in Chapter 7. Finally, we also had extensive discussions on Newton’s laws. I am very grateful to David for his patience and contributions.

Heartfelt thanks go to my wife, Heidi Forster. Heidi studied, corrected, and edited myriad versions of the manuscript. Also, in partnership with the highly competent assistance of professional translator Cheryl M. Buskirk, Heidi did most of the work translating extensive passages from La Musique Arabe into English. To achieve this accomplishment, she mastered the often intricate verbal language of ratios. Heidi also assisted me in transcribing the Indonesian and Persian musical scores in Chapter 11, and transposed the traditional piano score of “The Letter” in Chapter 12. Furthermore, she rendered invaluable services during all phases of book production by acting as my liaison with the editorial staff at Chronicle Books. Finally, when the writing became formidable, she became my sparring partner and helped me through the difficult process of restoring my focus. I am very thankful to Heidi for all her love, friendship, and support.

I would also like to express my appreciation to Dr. John H. Chalmers. Since 1976, John has generously shared his vast knowledge of scale theory with me. His mathematical methods and techniques have enabled me to better understand many historical texts, especially those of the ancient Greeks. And John’s scholarly book Divisions of the Tetrachord has furthered my appreciation for world tunings.

I am very grateful to Lawrence Saunders, M.A. in ethnomusicology, for reading Chapters 3, 9, 10, and 11, and for suggesting several technical improvements.

Finally, I would like to thank Will Gullette for his twelve masterful color plates of the Original Instruments and String Winder, plus three additional plates. Will’s skill and tenacity have illuminated this book in ways that words cannot convey.

Cris Forster
San Francisco, California
January 2010
1. American System, used throughout this text.
2. Helmholtz System.
3. German System.
LIST OF SYMBOLS

Latin

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-TET</td>
<td>12-tone equal temperament</td>
</tr>
<tr>
<td>a</td>
<td>Acceleration; in/s^2</td>
</tr>
<tr>
<td>a.l.r.</td>
<td>Ancient length ratio; dimensionless</td>
</tr>
<tr>
<td>B</td>
<td>Bending stiffness of bar; $\text{lbf}\cdot\text{in}^2$, or mica-$\text{in}^3/\text{s}^2$</td>
</tr>
<tr>
<td>B'</td>
<td>Bending stiffness of plate; $\text{lbf}\cdot\text{in}$, or mica-in^2/s^2</td>
</tr>
<tr>
<td>B_A</td>
<td>Adiabatic bulk modulus; psi, lbf/in^2, or mica-$(\text{in}\cdot\text{s}^2)$</td>
</tr>
<tr>
<td>B_I</td>
<td>Isothermal bulk modulus; psi, lbf/in^2, or mica-$(\text{in}\cdot\text{s}^2)$</td>
</tr>
<tr>
<td>b</td>
<td>Width; in</td>
</tr>
<tr>
<td>ϵ</td>
<td>Cent, 1/100 of a “semitone,” or 1/1200 of an “octave”; dimensionless</td>
</tr>
<tr>
<td>$\bar{\epsilon}$</td>
<td>Coefficient of inharmonicity of string; cent</td>
</tr>
<tr>
<td>c_B</td>
<td>Bending wave speed; in/s</td>
</tr>
<tr>
<td>c_L</td>
<td>Longitudinal wave speed, or speed of sound; in/s</td>
</tr>
<tr>
<td>c_T</td>
<td>Transverse wave speed; in/s</td>
</tr>
<tr>
<td>c.d.</td>
<td>Common difference of an arithmetic progression; dimensionless</td>
</tr>
<tr>
<td>c.r.</td>
<td>Common ratio of a geometric progression; dimensionless</td>
</tr>
<tr>
<td>cps</td>
<td>Cycle per second; 1/s</td>
</tr>
<tr>
<td>D</td>
<td>Outside diameter; in</td>
</tr>
<tr>
<td>D_i</td>
<td>Inside diameter of wound string; in</td>
</tr>
<tr>
<td>D_m</td>
<td>Middle diameter of wound string; in</td>
</tr>
<tr>
<td>D_o</td>
<td>Outside diameter of wound string; in</td>
</tr>
<tr>
<td>D_w</td>
<td>Wrap wire diameter of wound string; in</td>
</tr>
<tr>
<td>d</td>
<td>Inside diameter, or distance; in</td>
</tr>
<tr>
<td>E</td>
<td>Young's modulus of elasticity; psi, lbf/in^2, or mica-$(\text{in}\cdot\text{s}^2)$</td>
</tr>
<tr>
<td>F</td>
<td>Frequency; cps</td>
</tr>
<tr>
<td>F_c</td>
<td>Critical frequency; cps</td>
</tr>
<tr>
<td>F_n</td>
<td>Resonant frequency; cps</td>
</tr>
<tr>
<td>\bar{F}_n</td>
<td>Inharmonic mode frequency of string; cps</td>
</tr>
<tr>
<td>f</td>
<td>Force; lbf, or mica-in/s^2</td>
</tr>
<tr>
<td>f.r.</td>
<td>Frequency ratio; dimensionless</td>
</tr>
<tr>
<td>g</td>
<td>Gravitational acceleration; 386.0886 in/s^2</td>
</tr>
<tr>
<td>h</td>
<td>Height, or thickness; in</td>
</tr>
<tr>
<td>I</td>
<td>Area moment of inertia; in^4</td>
</tr>
<tr>
<td>i.r.</td>
<td>Interval ratio; dimensionless</td>
</tr>
<tr>
<td>J</td>
<td>Stiffness parameter of string; dimensionless</td>
</tr>
<tr>
<td>K</td>
<td>Radius of gyration; in</td>
</tr>
<tr>
<td>k</td>
<td>Spring constant; lbf$/\text{in}$, or mica$/\text{s}^2$</td>
</tr>
<tr>
<td>L</td>
<td>Length; in, cm, or mm</td>
</tr>
<tr>
<td>ℓ_M</td>
<td>Multiple loop length of string; in</td>
</tr>
<tr>
<td>ℓ_S</td>
<td>Single loop length of string; in</td>
</tr>
<tr>
<td>l.r.</td>
<td>Length ratio; dimensionless</td>
</tr>
<tr>
<td>lbf</td>
<td>Pounds-force; mica-in/s^2</td>
</tr>
<tr>
<td>lbm</td>
<td>Pounds-mass; 0.00259008 mica</td>
</tr>
</tbody>
</table>
List of Symbols

\(M/u.a. \) Mass per unit area; mica/in\(^2\), or lbf/s\(^2\)/in\(^3\)
\(M/u.l. \) Mass per unit length; mica/in, or lbf/s\(^2\)/in\(^2\)
\(m \) Mass; mica, or lbf/s\(^2\)/in
\(n \) Mode number, or harmonic number; any positive integer
\(P \) Pressure; psi, lbf/in\(^2\), or mica/(in\(^{-2}\))
\(p \) Excess acoustic pressure; psi, lbf/in\(^2\), or mica/(in\(^{-2}\))
\(\text{psi} \) Pounds-force per square inch; lbf/in\(^2\), or mica/(in\(^{-2}\))
\(q \) Bar parameter; dimensionless
\(R \) Ideal gas constant; in\(^{-2}\)/lbf/(mica\(^{-2}\)) or \(\text{psi}/(s^2 R) \)
\(r \) Radius; in
\(S \) Surface area; in\(^2\)
\(\text{SHM} \) Simple harmonic motion
\(T \) Tension; lbf, or mica/in/s\(^2\)
\(T_A \) Absolute temperature; dimensionless
\(t \) Time; s
\(U \) Volume velocity; in\(^3\)/s
\(u \) Particle velocity; in/s
\(V \) Volume; in\(^3\)
\(v \) Phase velocity; in/s
\(W \) Weight density, or weight per unit volume; lbf/in\(^3\), or mica/(in\(^{-2}\).s\(^2\))
\(w \) Weight; lbf, or mica-in/s\(^2\)
\(Y_A \) Acoustic admittance; in\(^4\)/s/mica
\(Z_A \) Acoustic impedance; mica/(in\(^4\).s)
\(Z_r \) Acoustic impedance of room; mica/(in\(^4\).s)
\(Z_t \) Acoustic impedance of tube; mica/(in\(^4\).s)
\(Z_M \) Mechanical impedance; mica/s
\(Z_b \) Mechanical impedance of soundboard; mica/s
\(Z_p \) Mechanical impedance of plate; mica/s
\(Z_s \) Mechanical impedance of string; mica/s
\(Z_R \) Radiation impedance; mica/s
\(Z_a \) Radiation impedance of air; mica/s
\(z \) Specific acoustic impedance; mica/(in\(^2\).s)
\(z_a \) Characteristic impedance of air; 0.00153 mica/(in\(^2\).s)

Greek

\(\Delta \) Correction coefficient, or end correction coefficient; dimensionless
\(\Delta \ell \) Correction, or end correction; in, cm, or mm
\(\delta \) Departure of tempered ratio from just ratio; cent
\(\gamma \) Ratio of specific heat; dimensionless
\(\theta \) Angle; degree
\(\kappa \) Conductivity; in
\(\Lambda \) Bridged canon string length; in
\(\Lambda_A \) Arithmetic mean string length; in
\(\Lambda_G \) Geometric mean string length; in
\(\Lambda_H \) Harmonic mean string length; in
List of Symbols

\(\lambda \)
Wavelength; in

\(\lambda_B \)
Bending wavelength; in

\(\lambda_L \)
Longitudinal wavelength; in

\(\lambda_T \)
Transverse wavelength; in

\(\mu \)
Poisson’s ratio; dimensionless

\(\Pi \)
Fretted guitar string length; mm

\(\pi \)
Pi; \(\approx 3.1416 \)

\(\rho \)
Mass density, or mass per unit volume; mica/in\(^3\), or lbf·s\(^2\)/in\(^4\)

\(\tau \)
Period, or second per cycle; s

Bibliography

Bibliography: Chapters 1–9

Bibliography

Bibliography

Chapter 10

Bibliography: Chapter 10

Chapter 11

Chinese Music

Indonesian Music

Bibliography

Indian Music

Sharma, P.L., Editor and Translator (Vol. 1, Ch. 1, 1992; Vol. 2, Ch. 2–6, 1994). *Brhaddeśi* of Śri Mataṅga Muni. Indira Gandhi National Centre for the Arts in association with Motilal Banarsidass Publishers, Delhi, India.

Arabian, Persian, and Turkish Music

Bibliography

Chapter 12

Writings on Cris Forster

Videos on Cris Forster

Video performances of solo and ensemble compositions at the Chrysalis New Music Studio.

https://www.youtube.com/user/CrisForster/feed

Index

Internet Version: no diacritics

A
Abul-Salt, 628, 630–632
Acceleration
of bar, 156–158
definition, 4
dimensional analysis, 4, 6
English Gravitational System, 9ff.
consistent system, 9–10, 14–15
experiment, 8–11, 15
gravitational, 6–7, 10–12, 14
of mass
mica, 14–16
slug, 10–11
Newton, 5–6
standard gravity, 11–12
of string, 2–3
Adiabatic bulk modulus
of air, 22
definition, 21–22
Admittance. See Flutes
Ahobala, 93, 587–591
Al-Din, Salah, 761–762
Al-Faruqi, Lois I., 641–642, 648, 760
Al-Isfahani, Abul-Faraj, 619–620, 624
Al-Khulai, M. Kamal, 749, 755
Al-Maualli, Ishaq, 619–620, 622
Al-Sanusi, Al-Manubi, 402, 720
Alexander the Great, 610
Ambisonance, 779n.74
Ancient length ratios (a.l.r.)
definition, 75–77, 287
Al-Farabi, 378
Needham, 487
equations, for stopped (bridged) string, 77
Euclid, 76, 81–82, 302–307
Greek ratios; multiple, epimore, and epimere, 286–287
Latin ratios; superparticular and superpartient, 384–385
Ptolemy, 321–322
string length of 120 parts, 316–317
Ramamatya, 568–573
Rameau, 431–434, 442–447, 452
Ssu-ma Ch’ien, 486–487
vs. frequency ratios, 75–76, 91, 93, 305, 307, 427, 431, 487, 576–577, 587
vs. modern length ratio, 305–307, 427, 440–441
vs. “vibration ratios,” 85–86, 93, 435–436
vs. “weight ratios,” 83, 85–86, 93
Zarlino, 378, 436, 452
Antinodes. See Bars, rods, and tubes; Flexible strings; Just intonation, Sauveur; Resonators, tube
Arabian musical terms. See also Scales, Arabian
24-TET
5 nim (Pers. lowered) notes, 756, 759
5 tik (Pers. raised) notes, 756, 759
7 fundamental notes; naghamat (notes), asasiyyah (fundamental), 756, 759
7 half notes, or “semitones”; arobat (sing. arobaah, half note), 756, 759
24 quarter tones, Mashaqah, (sing. rub, quarter; pl. arba, quarters), 756, 759
interval
Al-Farabi
awdah (whole step), 355, 647
fadlah (half step), 355, 647
Al-Jurjani
bagiyyah, limma, [L], 721–723
fadlah, comma of Pythagoras, [C], 722–723
mutammam, apotome, [L×C], 722–723
tanini, double-limma plus comma, [L×L×C], 721–723
tatimmah, double-limma, [L×L], 722–723
mode
6 hierarchical functions of tones: qarar, guwwah, zahir, ghammaz, markaz, mabda, 738
46 Modern Maqamat (sing. maqam, position or place; mode), 738, 761–771, 786n.209
Al-Farabi, 8 Ajnas (sing. jins, genus or kind; mode), 640, 646–655
Arabian musical terms (Continued)

Al-Munajjim
8 majari (sing. majra, course or path; mode), 622–625
and Philolaus’ diatonic scale, 624

Ibn Sina
12 shudud (sing. shadd, primary or principal mode, 727, 730–733, 744
12 shudud (sing. shadd), primary or principal mode, 726–731, 737, 740–743, 767–768
Rast (Pers. direct, straight, or regular mode), Melodic Mode 40, 727–730, 733, 740–741, 746–748

Arabian ratios. See also Greek ratios; Latin ratios

apotome
Al-Farabi, 636, 655
Al-Jurjani, 722–723
Al-Kindi, 334, 611, 615–616

apyknon, Al-Farabi, 659–663

comma of Pythagoras (ditonic comma)

Arabian theory
Al-Farabi, 655, 702–706
Al-Jurjani, 722–723
Al-Kindi, 611, 615–616, 620
of tunbur and ud, ancient, 696–697
variants of, notation, 697–701
Al-Farabi’s tunbur of Khurasan and original tunbur, 696–706
Safi Al-Din, First Ud Tuning, 712–713

Turkish theory, modern
of tunbur, 733–737
variants of, notation, 734

epipere, Al-Farabi, 661–663

epimore
Al-Farabi, 661–663
Ibn Sina, 673–676, 678–679

limma
Al-Jurjani, 722–723
Al-Kindi, 334–335, 611, 615–617
double-limma, 697, 699–700, 703–705, 722–723
Ibn Sina, 667–668, 671, 682–685
Safi Al-Din, 708–713, 722–723, 741–743
triple-limma, 722–723, 739–745, 767
Turkish theory, modern, 736–737
triple-limma, 739–745, 767

“minor third,” oldest ud tuning, 3-limit ratio, 620–622
Persian middle finger fret, Al-Farabi’s uds, 17-limit ratio, 634–639, 650–651, 653

“neutral second”

Arabian theory, modern
46 Maqamat, 763–766
of basic 16-tone scale, 770–771
Safi Al-Din, 84 Melodic Modes, Second Ud Tuning; in six of nine unchanged modes, 767–768
tik Zirkulah [D♯], 756

origins in near-equal divisions of intervals;
Ptolenmy, Al-Farabi, and Ibn Sina, 677–681

Persian theory, modern
of basic 17-tone scale, 770
Farhat
of 2 tars and 3 setars, two different kinds, 686–689
12 Dastgaha, 692–696

as tone on ud
Al-Farabi
Fret 5 on 12-fret ud, 641–643
Frets 3 and 4, Mujannab frets, on 10-fret ud, 632–635, 639, 673–674
Ibn Sina
Fret 2, Assistant to the middle finger of Zalzal fret, 668, 671, 673–674
two different kinds, 672
Safi Al-Din, Fret 2, Mujannab, Anterior fret, Second Ud Tuning, 714–716
as tone or interval of a genus or mode
Al-Farabi, Jins 2/Jins 8, 651–654, 676–677, 679–680
Ibn Sina
11 Melodic Modes, 681–685
Diatonic Genus 4 and 7, 674–677
Safi Al-Din, 84 Melodic Modes, Second Ud Tuning, 724–725, 729

“neutral seventh”

Arabian theory, modern
Auj [B♯], 749, 756, 758–759
of basic 16-tone scale, 770
used to justify 24-TET
D’Erlanger, 755–758
Marcus, 760–761
historical context of, Al-Farabi’s and Ibn Sina’s uds, 749–754

“neutral third”

Arabian theory, modern
of basic 16-tone scale, 770
Safi Al-Din, 84 Melodic Modes, Second Ud Tuning; in six of nine unchanged modes, 767–768
Sikah [E♯], 749, 756, 758–761
fasilah (genus), 761–762, 765
maqam, 767–769
used to justify 24-TET
D’Erlanger, 755–758
Marcus, 760–761
historical context of, 749, 754–755, 761
Farmer, 716
origins in near-equal divisions of intervals;
Ptolomy, Al-Farabi, and Ibn Sina,
677–681
Persian theory, modern
of basic 17-tone scale, 770
Farhat
of 2 tars and 3 setars, two different
kinds, 686–689
12 Dastgaha, 692–696
as tone on ud
middle finger of Zalzal fret
Al-Farabi, 11-limit ratio
Fret 8 on 10-fret ud, 634–640
Fret 9 on 12-fret ud, 641–645
Ibn Sina, 13-limit ratio, Fret 5, 667,
671–674, 676–677
Safi Al-Din, Fret 5, Persian middle finger
fret, Second Ud Tuning, 714–717
as tone or interval of a genus or mode
Al-Farabi, Jins 2, 651–654, 676–677,
679–680
Ibn Sina
11 Melodic Modes, 681–686
Diatonic Genus 7, 675–677
Safi Al-Din, 84 Melodic Modes, Second Ud
Tuning, 724–725, 729
Ptolemy’s classifications in
Al-Farabi, 658–659
Ibn Sina, 678–679
Safi Al-Din, 711–713
emmelic/melodic intervals
B (baqiyyah or fadlah), 721–723, 740
J (tatimmah or mutammam), 721–723,
740, 744
T (tanini), 721–723, 727, 740, 744
pyknon, Al-Farabi, 659–663
“quarter-tone”
4 modern musical symbols of, 713–714
half-flat and half-sharp signs, Racy, 760
koron and sori signs, Farhat, 640
Arabian theory
Al-Farabi, origin and function of ratio \(\frac{35}{32}\),
354–355
Ibn Sina, origin and function of ratio \(\frac{36}{35}\),
679
Marcus
ambiguity of “quarter-tones” in musical
practice, 760–761
description of Mashaqah’s twenty-four
“quarter” tones, 759
schisma
definition, 373, 697
variants of, notation, 697–701
Al-Farabi’s tunbur of Khurasan and original
tunbur, 696–707
Safi Al-Din
First Ud Tuning, 373–375, 710–713, 717
Second Ud Tuning, 716
superparticular (epimere)
Al-Farabi, 660–661
Ibn Sina, 678–679
superpartient (epimere), Al-Farabi, 661
Arabian scales, See Scales, Arabian
Arabian tetrachords
Al-Farabi
8 Ajnas
description of, 646–648
fractional and integer parts of tones,
Aristoxenian theory, 648–649
interpretation of
as length ratios on ud, 650–655
modern, in cents, 650
Jins 2, 676–677, 679–680
Jins 8, 679–680
conjunct, three standard modes, 644–645
genera, soft genus and strong genus, 659–660
classification of 15 tetrachords
soft ordered consecutive and non-
consecutive, 660–663
strong doubling, strong conjunct, and
strong disjunct, 661–663
Greater Perfect System. See also Greek
tetrachords
three conjunct/disjunct systems for the
distribution of, 662–666
inversion of intervalic order
Aristoxenus’ tetrachords, 648
Philolaus’ tetrachord, 648–649
Al-Kindi’s ud, 612
description of, 613
Philolaus’ tetrachord, three harmoniai,
616–617
classification, modern
9 fasail (genera): seven tetrachords, one
trichord, and one pentachord, 762
46 Maqamat, 763–766
Safi Al-Din, 84 Melodic Modes, Second Ud
Tuning
9 modern maqamat, interval patterns
identical to, 767–768
32 modern tetrachords and modes,
traceable to, 763–768
fasail (sing. fasilah, family or genus), maqamat
with similar lower tetrachords, 761–762
Arabian tetrachords (Continued)

jins al-asl or jins al-jidh, primary lower tetrachord, 761, 767–769

jins al-far, secondary upper tetrachord, 761, 767–769

munfasil, disjunct, 767

mutadakhil, overlapping, 767

muttasil, conjunct, 767

Ibn Sina

11 Melodic Modes, 681–686

12 Dastgaha, Persian theory, modern, 692–696

16 tetrachords, based on strong and soft genera, 676

construction of, with epimore ratios, 673–674

diatomic genus, preferred over chromatic and enharmonic genera, 673

Diatonic Genus 4 and 7, 13-limit ratios, 674–677, 679–681

Rast or Mustaqim, 727–731

modal origins

Arabian, on Al-Farabi’s and Ibn Sina’s uds, 747–754

Turkish, on Safi Al-Din First Ud, 732–733, 744–748

Safi Al-Din

84 Melodic Modes

First and Second Ud Tunings, 724–725

35 modes, conjunct tetrachord/pentachord combinations of, 722–726

49 modes, conjunct tetrachord combinations of, 722–726

of seven-by-twelve matrix system, 728–729

6 Awazat (secondary or derived), 730–733

12 Shudud (primary or principle), 726–727, 730–733

Turkish theory, modern, on First Ud

5 of 6 ‘Variant’ Maqamat, 744–745

10 of 13 Basic Maqamat, 740–744

Archimedes, 265, 610

Archytas, 86–89, 92, 280, 283, 288–289, 297, 311, 318

Area moment of inertia. See Bars, rods, and tubes

Arel, H. Sadettin, 738

Arithmetic divisions/progressions. See also Cents, harmonic series; Means

definition, 253–254

Archytas, 86–87

frequency ratios

of “double-octave and a fifth,” ratio ¾, 426–428

of “fifth,” ratio ½, 437

Rameau, 434–436, 441–444

of “octave,” ratio ¾, 91–93, 437

of “triple-octave,” ratio ¾, Rameau, 428–433

of harmonic series, 254–255

length ratios

of “double-octave and a fifth,” ratio ¾

Rameau, in context of dual-generator, 444–446

Salinas, 402–403

Stifel, 386–390

Zarlino, 392, 394

of “fifth,” ratio ½, 325, 396, 437

Rameau, 442–444, 446–448

Safi Al-Din, 381

Stifel, 401

of five tetrachords, Ptolemy, 328

of “fourth,” ratio ¾, 297, 325

Ptolemy’s Even Diatonic, 329

of “octave,” ratio ¾, 87–89, 91, 295–296, 437

ancient length ratios vs. frequency ratios, 87–91

Ibn Sina, 379–381

Ptolemy, 295–297, 324

Rameau, 431–432

Zarlino, 382–383

of “whole tone,” ratio ¾

Al-Farabi, 354–355, 636

Cardan, 355

Galilei, Vincenzo, 355–356

Mersenne, 356

Ptolemy, 354, 636

Zarlino, compound unities, 390–391

Aron, Pietro, 342, 345, 347, 352–353

Ayyar, C. Subrahmanya, 586

B

Bach, Johann S., vi, 350

Barbera, Andre, 82, 308

Barnes, John, 349–350

Bars, rods, and tubes

antinode (clamped-free bar)

bending (BA), 175

location of, first four modes (bar, rod, and tube), 177

displacement (DA), 175

local reduction at, tuning process, 176–177

antinode (free-free bar)

bending (BA), 153–154

bending moment at, 155–157

local reduction at, tuning process, 160–163

location of, first five modes (bar, rod, and tube), 162

displacement (DA), 153

experiment, 153–154
area moment of inertia (bar, rod, and tube), 159
bending
 stiffness, 158
 and bending moment, direct
 proportionality, 159–160
 effect on mode frequencies, 159
 as restoring force, 148, 152
 tuning effect on, 160
wave speed, 149–150, 159
 and bending wavelength, inverse
 proportionality, 149
 and dispersion, 148–149
 effect on inharmonic frequencies, 148–149
 experiment, 149, 153–154
 stiffness effect on, 147–148
 tuning effect on, 160
wavelength, 150
 effect on bending moment, 154
 experiment, 149
dispersion
 definition, 149
 variables, indicators of, 152–153
mode
 frequency (clamped-free bar), 174–175
 ratios of second, third, and fourth modes, 174
 frequency (free-free bar), 148–149, 151–152
 and bending moment, 154
 and height, direct proportionality, 158–160
 ratios of second, third, and fourth modes, 148
 theoretical vs. actual, rosewood test bar, 163
 tuning effect on, 160–161
 shape (clamped-free bar), of first three modes, 175
 shape (free-free bar), of first three modes, 153
node (clamped-free bar)
 bending moment and shear force at, 175
 local reduction at, tuning process, 176–177
 locations of, first four modes (bar, rod, and tube), 177
node (free-free bar)
 bar mounting considerations, 163, 170–171
 locations of, first five modes (bar, rod, and tube), 162
 shear force at, 155–157
 plane sections (bar, rod, and tube), 159
 radius of gyration (bar, rod, and tube), 159
restoring forces (clamped-free bar), 154
 bending moment, 175–176
 shear force, 175–176
 tuning effect on, 176–177
restoring forces (free-free bar), 154
 bending moment, 154–161
 effect on geometry of bar elements, 156
 shear force, 154–158, 160–161
 tuning effect on, 160
 tuning process (clamped-free bar), 176–177
 mass loading, bars vs. reeds, 178
 tools and techniques, 177
 tuning process (free-free bar), 160–161
bass marimba bar
 frequencies, first three modes; before, during, and after tuning, 165
 frequency changes
 eighteen analysis/decision steps, 168–170
 eighteen tuning steps, 165–168
 length limitations of, 164–165
 triple-arch design, bar profile, 161–163
 tuning function of first three antinodes, 161–163
 higher mode frequencies
 effect on pitch perception of fundamental, 163–164
 tuning possibilities of, 164
 tools and techniques, 164
treble marimba bar
 frequencies, first two modes; before and after tuning, 171
 length limitations of, 171
 single-arch design, bar profile, 171
 tuning function of first two antinodes, 170–171
Bass Canon
 construction of, 800, 805
 dimensions, 805
 Plate 3, 847
Bass Marimba
 24 bars of, frequency ratios, 827
 dimensions, longest and shortest bars, 826
 mode tuning of, 161–165
 properties of, Honduras rosewood, 172–173, 885–886
 C2 cavity resonator, Resonator II, 221
 dimensions
 inside, 217
 outside, 220
 tuning of, 219–222
 dimensions, 826
 Plate 8, 852
Beat rates. See also Inharmonic strings
 of 12-TET, 136
 “fifth,” 136
 “fourth,” 137
 “major third,” 136–137, 139–140, 146n.28
 beating phenomenon, 135–137, 365
 effect on musical quality, 108, 118, 135
 limits of human perception, 136
 Huygens, on the consonance of 7-limit ratios: 7/4, 5/4, and 7/4, 364–365
 Ramamatya, description of dissonance on vina, 572
Beat rates (Continued)
of shimmering “octave,” 509, 515
 Balinese gamelan
 gender rambat, 529
 penjorog (beat rate), 524
 Javanese gamelan
 gender barung, 516, 519–522
 saron demung, 509–511
of string
 consonance vs. dissonance, 365
 flexible canon strings vs. stiff piano strings, 140–142
 small integer ratios vs. large integer ratios, 138–140
harmonics
 coincident, 136ff.
 intermediate, 137ff.

Beeckman, Isaac, 406
Benade, Arthur H., 126, 235, 247
Bending moment. See Bars, rods, and tubes, restoring forces
Benedetti, Giovanni Battista, 415–416
Bernoulli, Daniel, 426
Bharata, 540–550, 552–562, 564, 572, 577, 598–599
Bhatkhande, V.N., 581, 587, 594–596
Boehm, Theobald, 235
Boethius, 284, 380
Break strength
 definition, 35
 of string
 high-carbon spring steel music wire, 884
 plain, 35, 111, 134
 wound, 40
Brothers of Sincerity (Ikhwan al-Safa), 620–622
Brown, Robert E., 528
Brun, Viggo, 458
Buskirk, Cheryl M., viii

C
 Canons. See also Bass Canon; Harmonic/Melodic
 Canon; Little Canon
 Arabian qanun, ancient instrument, 628
 Abul-Salt, 628, 630–632
 Al-Farabi, 632
 Al-Jurjani, 629–631
 hamila (moveable bridge), 628, 631–632
 Ibn Sina, 670–672
 Ibn Zaila, 628
 from qanun to ud, evolutionary process, 632, 669–670
 construction requirements
 bridge, 65
 original design, 792–794
 string, 65, 118
 function of, 77–78, 80, 792
 Greek kanon
 definitions, 65

 Euclid, 76, 81–82
 Plato, 91–92
 Ptolemy, 78
 Canright, David R., v–vi, 101, 156, 877
 Plate 15, 859
 Cardan, Jerome, 355

 Cents
calculation
 adding and subtracting, 269
 conversion
 cents to decimal ratio, 270
 cents to integer ratio. See Euclidean algorithm
 frequency ratio to cents, 268–269
 Ellis, 1200th root of 2, 267
 increasing or decreasing frequency by cents, 270–271
 interval comparison, 270
definition, 268
 exponent
 definition, 257–258
 exponential function, 257
 as logarithmic function, three aspects, 258
 first law of, 259
 four laws of, 278n.13
 Stifel’s description, 277n.6
 harmonic series
 as arithmetic progression, 254–255
 human process of adding intervals in sequences, 260–265
 no human perception of interval patterns, 254
 as geometric progression, 254–255
 human perception of interval patterns, 254–255
 mathematical process of multiplying frequencies in sequences, 256–262, 263–265
 intervals of, verbal terms vs. mathematical terms, 64–65, 256
 logarithm
 antilogarithm., 259, 262ff.
 common
 base 1.00057779, 109, 267–268
 base 2, 262–264, 274
 base 10, 258–262
 definition, 258
 four laws of, 278n.13
 guitar frets, 271–273
 and human hearing, adding process, 262
 logarithmic function, 258
 as exponential function, three aspects, 258
 musical slide rule, 273–275
 Napier, inventor of, Greek logos + arithmos, 257
 natural, base e, 109, 258
octave” equivalence
 definition, 257
 as human trait, 257
 ratio, simplification of, 257
Chalmers, John H., viii, 308
Cheve System
 cipher and cipher-dot notation, 508, 535n.2
 letter-dot notation, 599
Chiao Yen-shou, 502
Ch’ien Lo-chih, 502
Ch’in (qin)
 construction of, 488–489
 as microtonal instrument, 496
Chinese scales. See Scales, Chinese
Ching Fang, 502
Chrysalis
 construction of, 788–789
 dimensions, 790
 Plate 1, 845
 Plate 13, 857
 score, excerpt from Song of Myself, 800–802
 stringing and tuning of, for Song of Myself, 794–797
Chrysalis Foundation, 839, 841, 843
 New Music Studio, 842–843
 Workshop, Plate 16, 860
Chu Hsi, 492
Chu Tsai-yü, 354, 502–504, 542, 569, 749
Chuquet, Nicolas, 339–341
Cleonides, 309–310, 649, 655
Cohen, H.F., 139
Comma of Didymus. See Greek ratios, comma
Comma of Pythagoras. See Arabian ratios; Greek ratios, comma
Compression and rarefaction
 alternating regions
 of plane wave, in solid, liquid, gas, 186–187
 of sound wave, 183–184
 of bar-to-cavity resonator coupling, 214, 222
 of bar-to-tube resonator coupling, 196
 definition, 130–131, 183, 200
 dependence on wave speed, 131
 in infinite tube, 200–203
 in resonator
 cavity, 213, 219
 tube, 190–196, 203–208
 of soundboard, inefficient regions, 133
 of string, leading and trailing surfaces, 130–131, 183–184
Conductivity. See Flutes, admittance
Cremer, L., 123, 131
Cristofori, Bartolomeo, 118, 130
Crocker, Richard L., 308
Crusoe, Robinson, 788
D
D’Alembert, Jean le Rond, 423
Dattila, 545, 548–549, 558
de Fontanelle, Bernard Le Bovier, 438
de Villiers, Christophe, 406
D’Erlanger, Baron Rodolphe, 625, 666, 675, 755, 758–760
Descartes, Rene, 404
Diamond Marimba, 13-Limit
 49 bars + 5 bars of, frequency ratios, 824–825
 dimensions of, longest and shortest bars, 825
 mode tuning of, 171–172
 properties of, Honduras rosewood, 172–173, 885–886
 construction of, 825–826
 dimensions, 825
 expansion of
 Meyer’s 7-limit Tonality Diamond, 824
 Partch’s 11-limit Diamond Marimba, 824
 Plate 7, 851
 resonator
 airtight seal, making, 211
 dimensions of lowest, G3 at 196.0 cps, 198
Didymus, 280, 319, 329–332, 664
Dieterici, Friedrich, 620
Dispersion
 definition, 104, 149
 variables, indicators of, 152–153
Downbearing force
 of string on canon bridge, 792
 string’s angle of deflection, 794
E
el-Hefni, Mahmud, 612
Ellis, Alexander J., 265, 267
End corrections. See Flutes, corrections;
 Resonators, cavity; Resonators, tube
Equal temperaments
 12-TET, 361–362
 1/2 ditonic comma
 calculation of, 352–353
 cumulative reduction of twelve consecutive “fifths,” 353–354
 cent comparisons
 to 3-limit, 5-limit, 7-limit, and 1/4-Comma
 Meantone scales, 376–377
 Ramis vs. Stevin, 375–376
 discovery of
 Chu Tsai-yü, 502–504
 Stevin, 358–362
ditonic comma (comma of Pythagoras),
 definition, 335, 350
“fifths”
 circle of 12, That produces, 352–353
Equal temperaments (Continued)
frequencies of eight octaves, 879
frequency ratios, powers of the 12th root of 2, 271
fret equations for, 272–273
on fretted lutes and viols, 340, 348
“major third” of, two integer ratio approximations, 140
“semitone” of approximate value, rational, ratio 18/17
Al-Farabi, 354–355
Cardan, 355
lute fretting instructions
Galilei, 355–356
Mersenne, 356–359
lutenists’ preference over exact value, 357
origin of, Ptolemy’s arithmetic division of “whole tone,” ratio 9/8 354
exact value, irrational, 353–354
12th root of 2, 353–354
Chu Tsai-yü, 503
Stevin, 360–361
vs. eleven integer ratio approximations, to the nearest cent, 459
vs. frequencies of the harmonic series, 63–64
22-TET, Indian theory, ancient
Bharata
22-sruti scale, 540–543, 544–547
logarithmic pramana sruti, 541–542
no basis in fact, 542–543, 572–573
24-TET, Arabian theory, modern, 755–758
formulaic imposition of, 749, 755–758
on fretless ud, as moot issue, 760–761
Marcus
ambiguity of “quarter tones” in musical practice, 760–761
description of Mashaqah’s twenty-four “quarter” tones, 759
used to justify “incorporation” of “quarter tones,” D’Erlanger and Marcus, 755–758, 760–671
31-TET
Huygens, logarithmic calculations, 362–364
spiral of 31 “fifths,” That closely approximates, 362–363
53-TET
spiral of 53 “fifths,” That closely approximates, Ching Fang, 502
Turkish theory, modern, close approximations of 4-, 5-, 8-, 9-, and 12-comma intervals, 736–737
60-TET, spiral of 60 “fifths,” That closely approximates, Chiao Yen-shou, 502
360-TET, spiral of 360 “fifths,” That closely approximates, Ch’ien Lo-chih, 502
Eratosthenes, 280, 318, 329–332
Euclidean algorithm
12-TET, eleven integer ratio approximations, 459
Brun, 458
and continued fractions, 484n.364
for converting irrational decimal ratio to rational integer ratio approximation, 458–459
Exponent. See Cents
F
Farhat, Hormoz, 677, 686–696, 744, 759, 771–772
Flageolet tones
of ch’in, 488–492
experiments
Roberts, 421
Sauveur, 424–426
of trumpet marine, 408–409
Fletcher, Harvey, 99–100, 113, 135
Flexible strings
antinode
definition, 53, 55
formation of, as regions of maximum motion, 47–48, 51–54
locations of, first six modes, 58
equations, for stopped (bridged) string frequency, 77
length, 77
equilibrium position, dynamic, 48–49
frequency. See also Flexible strings, mode
definition, 55, 57
dimensional analysis, 55
as function of wavelength, 80
harmonic series
definition
mathematical: length ratios of subdividing string, 63–64, 427–428
verbal: frequency ratios of subdividing string, 63–64, 427–428
discovery of
infinite series, first thirty-two harmonics, Sauveur, 423–424
limited series, first six harmonics, Mersenne, 404–408
first sixteen harmonics, two series, 64
intervals of, verbal vs. mathematical, 64–65, 256
harmonics
definition, 63–64
first six on bridged canon string, 66
first sixteen of subdividing string, 64
Index

frequency ratio, 73
ideal characteristics, 44
impedance, mechanical wave, 121
loop
 count (mode number), 59, 105
 definition, 59
 multiple loop length, 70
 ratio, 73
 pattern, 59
 single loop length, 59–60
 ratio, 73
mode
 definition, 98
 frequency
 definition, 59, 62
 and mode wavelength, inverse
 proportionality, 61
 shape, first six modes, 58
node
 definition, 53, 55
 formation of, as points of minimum motion,
 48–49, 51–54
 function of, 53, 116n.5
 locations of, first six modes, 58
 two different kinds, 55–56
period
 definition, 54, 56
 dimensional analysis, 54
pulse, transverse traveling
 crest and trough, 44–46
 collision, 46–49
 reflection, 45–46
 definition, 44
and Pythagoras, 44
ratios. See also Ancient length ratios
 frequency
 definition, 62, 72
 as function of length ratio, 80, 93
 of harmonics, 73
 and length ratio, inverse proportionality,
 63, 80
 of non-harmonic tone, 73
interval
 definition, 67
 of harmonics, right sides of bridged canon
 strings, 68–69
 of non-harmonic tone, 74
length
 complementary, 69, 78
 definition, 59, 69–70
 and frequency ratio, inverse proportionality,
 63, 80
 human comprehension of, 79, 80, 93
 of non-harmonic tone, 73
simple harmonic motion (SHM)
 definition, 50
 of particle motion, in cord/string, 50–51
superposition
 definition, 48
interference
 constructive, 47–48
 destructive, 48–49
standing wave, production of, 48, 51–54
wave
 standing
 definition, 2, 48, 51–52
 of first six modes, 58
 motion of, 52–53
 and sound production, 53–54
transverse traveling
 in cord, 50–51
 definition, 50, 183
 in string, 2–3, 44–53, 58
 superposition of, 51–54
wave speed, transverse traveling, 60–61
wave train (waveform)
 definition, 50–51
 frequency of, 55, 57
 period of, 54, 56
 as transverse traveling wave, 50–51
wavelength
 definition, 54
 equations, 60, 71
 of first six modes, 58
 as function of frequency, 80
Flutes
admittance
 complex/non-complex, 233
 definition, 233
 terminating, 234
 and cutoff frequency, 247
 of embouchure hole and flute bore, 235
 of tone hole, flute bore, and tube-piece, 236
conductivity
 definition, 233
 of duct, fictitious and actual, 234–236
 of embouchure hole and flute bore, 234
 of tone hole diameter, limitations, 233–234
corrections, 232
 at embouchure hole, 228, 231–232
 empirical data
 concert flute, 235
 simple flute, 240
 at key pad, 228
 Nederveen and Benade, 237
 at open tube end (end correction), 228, 231–233
 at tone hole, 228, 231–232, 236, 244–245
 Nederveen, 238
cutoff frequency, Benade, 247
embouchure hole, typical dimensions
 concert flute, 235
Flutes (Continued)

- simple flute, 240

frequency
- when known, predicting flute dimension and tone hole location, 229–241
- when unknown, determining from flute dimension and tone hole location, 242–246

impedance, acoustic, non-complex, 233

intonation, 227
- at embouchure hole
 - airstream, 227, 240
 - blowing technique, 236
 - lip coverage, 227, 233, 240
- flute tube effect on, 235–236
- making, simple flute, 236, 246–248

critical variables
- embouchure hole correction, 240
- flute wall thickness, effect on timbre, 247
- musical interval, Nederveen, 237–238
- tone hole diameter, 239, 240–242

speed of sound in, 229

subharmonic series, 246

standing wave, 231, 234, 245, 248n.10

substitution tube, Nederveen, 229–230
- two different kinds, 230–232

tone hole
- dimension and location
 - concert flute, 239
 - simple flutes, 241
- from embouchure hole, strategy for length calculation, 231–232

tube length
- closed-closed (substitution tube), acoustic and effective, 230–232
- effective
 - at embouchure hole, approximate, 234–235
 - Nederveen, 233
 - at tone hole, exact, 236
 - Nederveen, 237
- open, measured vs. effective, 229–231

variables, twenty-seven symbols, 228–229

Force. See also Restoring force; Weight

- density
 - definition, 5–6, 8
 - English Engineering System, 9, 12, 16
 - pounds-force (1 lbf), 7–9
 - inconsistent system, 9–10

- English Gravitational System, 9
 - pounds-force (1 lbf), 10ff.
 - consistent system, 9–11, 14–15

experiment, 7–8, 10, 15
- of gravity, 6–8, 10–12
- of muscular effort, 5, 8, 16
- Newton, 2, 5
- of spring, 11

- of tension, 18–19
 - unit, 10, 14–15

Forster
- Cris, v–vii, 839–844
- Plate 13, 857
- Plate 15, 859
- Heidi, viii, 839–844
 - Plate 14, 858
 - Plate 15, 859

Forster instruments. See Bass Canon; Bass Marimba; Chrysalis; Diamond Marimba, 13-Limit; Glassdance; Harmonic/Melodic Canon; Just Keys; Little Canon; Simple Flutes

Franklin, Benjamin, 828

Frequency

- of bar
 - clamped-free, 174–175
 - mass loaded, 178
 - free-free, 148, 151–152, 158

- definition, 54–55
- dimensional analysis, 55

- of longitudinal mode: in plain string, uniform bar, and fluid in tube, 187

- of resonator
 - cavity, 215–217
 - tube
 - closed, 210
 - closed-closed, 230
 - open, 209

- of spring-mass system, 185, 219, 223n.9

- of string
 - flexible, 58–62, 102–103
 - stiff, 99, 105–107, 112

- and wavelength
 - as function of, 80–93
 - inverse proportionality, 61–62

Frequency ratios. See Flexible strings, ratios

Freud, Sigmund, 557

G

Gaffurio, Franchino, 367

Galilei

- Galileo, 283, 338, 356
 - Vincenzo, 315, 355–356, 358

Gamelan. See also Scales, Indonesian instruments

Bali

- bar percussion instruments, built in pairs: *pengumbang* (low) and *pengisep* (high), 524, 532–533
 - *penjorog* (beat rate) of, 524
 - shimmering “octaves” of, tuned sharp, 524
 - sharp and flat, 529–530

- *gangsa* (saron), 533
Gender
dasa, 523
jegogan, 524
rambat, 520–530, 532
tjalung (jublag), 530–534
wayang, 522
suling gambuh, 524–528, 530, 532
trompong, 523–524, 527–528, 532
Java
bar percussion instruments, beat rates
four different kinds, 522
of tumbuk tuning, 519–522
gender
barung, 513–517, 519–521
panerus, 519
saron
demung, 509–511, 517–520
ritjik (saron barung), 510–511
shimmering “octaves,” tuned
sharp, 509–511
sharp and flat, 515–516, 519–521
orchestras, 508
Bali
Court of Tabanan, 526
Kuta Village, 523
Pliatan Village, 524, 530–534
Puri Agung Gianyar, 529–530
Tampak Gangsal, 523, 527
Java
Kangjeng Kyahi Sirat Madu, 520
Kyahi Kanjutmesem, 509–510, 517–520, 519–522

Geometric divisions/progressions. See also Cents, harmonic series
definition, 254
Archytas, 86–87
of harmonic series, 254–255
length ratios
of 12-TET
Chu Tsai-yü’s solution, 503–504, 542
Stevin’s solution, 358–362, 542
of “fifth,” ratio $\frac{3}{2}$, Chuquet, 339–341
of “fourth,” ratio $\frac{4}{3}$
Aristoxenus, 309–318
Al-Farabi’s interpretations of, especially Jins 8, 646–655
arithmetic-geometric asymptote,
313–315, 318
modern interpretations of, 309–313, 466n.75, 655
Ptolemy’s interpretation of, 316–317
of “major third,” ratio $\frac{5}{4}$; meantone ratio, 342–343
of “minor third,” ratio $\frac{5}{4}$, Chuquet, 339–341
of “octave,” ratio $\frac{3}{2}$, 297–299
Chuquet, 399–341
Euclid’s mean proportional, 297–298
Zarlino, 338–339
of “whole tone,” ratio $\frac{7}{6}$
Ptolemy’s rational approximation, 320
Zarlino, 338–339
Ghosh, M., 549, 556–557, 559
Glassdance
48 crystal glasses, frequency ratios, 830–831
Ptolemy’s Soft Diatonic, 832
construction of, 828–830
dimensions, 832
Plates 9, 10, and 14, 853–854, 858
tuning process, of brandy snifter glasses, 830–831
Govinda, 565, 574–576, 578–584
Greek ratios
classification
epimere, 285, 287
epimere, 284, 287
Euclid, 287
Pythagoreans, 288, 323
Zarlino, 397
equal, 284
Ptolemy, 324
multiple, 284, 286
Euclid, 287
Mersenne, 417
Ptolemy, 288, 321, 323
Pythagoreans, 288
multiple-epimere, 285–286
Ptolemy, 288, 319
Pythagoreans, 288, 319
multiple-epimore, 284–285
comma
of Didymus (syntonic comma), 315, 350, 363, 400, 547, 697
Aron, 344–345
definition, 344
Ramamatya, 572
Safi Al-Din, 372–374
of Pythagoras (ditonic comma), 319–320, 487, 542
12-TET, 352–354
Al-Farabi, 655
tunbur of Khurasan and original tunbur, 697–706
Al-Jurjani, 722–723
Al-Kindi, 334, 611, 615–616, 620
Aristoxenus, 314, 318
definition, 314–315, 334–335
Ramamatya, 571–572
Safi Al-Din, 372–374
Turkish theory, modern, 736–737
Werckmeister, 350–351
Greek ratios (Continued)

Euclid, 76, 81–82, 287

interval

apotome, 314–315, 319

‘Apotome Scale’, 336, 418–419

Ptolemy, 314–315, 319

Ramamatya, 571

apyknon, 326–327, 659–660

Al-Farabi, 660–663

Ptolemy, 328–329, 334
diesis, modern, 464n.48

Aristoxenus, 314–315, 318

Philolaus, 301

Ptolemy, 326–332

diapason, 81, 407, 416
disdiapason, 407, 410
ditonon, 384
ditone, 314, 416, 633–634
epi prefix, 81, 384

epitetartos (epitetartic), 286–288, 657
epitritos (epitritic), 81–82, 86, 286–287
diatessaron, 81, 384
epogoos (epogoos), 81–82, 86, 287
tonon, 82, 384

echmielos, 81–82, 86, 287
diapente, 81, 382, 84, 412–413

limma, 300, 314–315, 319

Aristoxenus, 315–316

‘Limma Scale’, 336

Ptolemy, 314–315, 319–320

Ramamatya, 571

pyknon, 326–327, 659–660

Al-Farabi, 660–663

Didymus, 329–330

Eratosthenes, 229–330

Ptolemy, 326–329

schisma, 372–373

“schismatic fifth,” 372–375

Nicomachus
classification, translated as Latin ratios, 486
dimoirou (two-thirds), 84, 96n.30

hemiseias (half), 84, 96n.30

sound (frequency) and string length, inverse

proportionality, 84–85

“vibration ratio,” 85

“weight ratio,” 82–84, 86

Plato, 91–92

Ptolemy. See also Arabian ratios
classification, 323

epphelic/melodic (epimores smaller than

$\frac{1}{2}$), 288–289, 323–326

homophonic (multiples), 295, 323–324

symphonic (first two epimores, $\frac{1}{2}$ and $\frac{1}{3}$), 322–326

“quarter-tone,” origin and function of ratios $\frac{32}{31}$

and $\frac{31}{30}$, 290–292

Greek scales, See Scales, Greek

Greek tetrachords

Aristoxenus, six different kinds, 309–310

fractional and integer parts of tones, 309–310

interpretation of

arithmetic-geometric asymptote,

313–315, 318

modern, in cents, 310

Ptolemy, as length ratios, 313, 316–317,

320–321

conjunct, Terpander’s heptachord, 289, 291–293

definition, 289

disjunct, Pythagoras’ octachord, 289, 293
genera of; diatonic, chromatic, and enharmonic,

289–290

Archytas, 289

Aristoxenus, 289, 309–310

Ptolemy, 326–332

Greater Perfect System (GPS)

composed of four different kinds, 289–292

diatomic genus, in context of

Euclid, 303–304

Philolaus, 301

Ptolemy, 333

Euclid, description of 15-tone “double-

octave,” 289, 302–303

harmoniae (modes) of, seven different kinds,

290–292

standard “octave” of

Dorian Mode, Greek, 301

Lydian Mode, Western, 301

three scales, based on three genera, 292

Lesser Perfect System (LPS), composed of three

different kinds, 289–291

Philolaus

Diatonic, ancient and original division,

299–301, 462n.17, 464n.47

on Al-Kindi’s ud, 615–617

in Euclid, 302–307

plagiarized by Plato, 91–92

Ptolemy

Catalog of Scales, 318–319, 330–332

Even Diatonic, origin of Arabian “neutral

second” and “neutral third” tetrachords,

329, 679–681

pyknon and apyknon, three conceptual

principles for the division of tetrachords,

326–330

Soft Diatonic, unique musical quality of a

minor scale, 334, 832

Tense Diatonic, origin of Western major scale,

in Zarlino, 333, 832

theory of graduated consonance,

mathematical/musical basis for the

division of tetrachords, 321–326
H
Harmonic divisions/progressions. See also Means

definition, Archytas, 86–87
frequency ratios
of “fifth,” ratio 3/2, 437
Rameau, 435
of “octave,” ratio 2/1, 91–93, 437
harmonic series, context of, 63–64, 80, 427–428
length ratios
of “double-octave and a fifth,” ratio 3/1,
426–427
Rameau, in context of dual-generator,
444–446
Salinas, 403
Stifel, 378, 386–390
Zarlino, 378, 392–395
of “fifth,” ratio 5/3, 397, 437
Rameau, 440–443, 446–448
Safi Al-Din, 381
Stifel, 401
Zarlino, 377–378, 382–383, 386, 399–401
of “octave,” ratio 2/1, 89–91, 437
ancient length ratios vs. frequency ratios,
87–91
Ibn Sina, 379–381
Rameau, 431–432
Zarlino, 382–383
of “triple-octave,” ratio 5/3, Rameau, 430,
432–433
Zarlino, sonorous quantities, 390–391
Harmonic/Melodic Canon. See also Canons
construction of, 790–792
bridge, original design, 792–794
dimensions, 794
Plate 2, 846
score, excerpt from Song of Myself, 800, 803–804
stringing and tuning of, for Song of Myself,
794–795, 798–799
Harmonic series. See Cents; Flexible strings; Just
intonation
Harmonics. See Flexible strings; Inharmonic
strings, tone quality; Just intonation
Harpsichords. See also Pianos, vs. harpsichords
Huygens, keyboard for 31-TET, 363–364
impedance ratio
air-to-soundboard, 129
soundboard-to-string, 126
inharmonicity
analysis of, 110–111
coefficients of, plain strings, 111, 126
soundboard
critical frequency, 132–133
dimensions, typical
surface area, 129
thickness, 125
impedance
plate vs. soundboard, 124, 126
radiation, of air at soundboard, 129
sound radiation, 133
string, D 1 (d'),
dimensions and tension, typical, 125
Hubbard, 144n.10
impedance, 125–126
Harrison, Lou, v
Heath, Thomas L., 308
Helmholtz, Hermann, 212
resonator. See Resonators, cavity
Hitti, Philip K., 611
Hood, Mantle, 512, 517–519, 521, 524
Hsu Li-sun, 486, 492
Huang Ti, 485
Hubbard, Frank, 125
Huygens, Christiaan, 289, 362–365
I
Ibn Al-Munajjim, 619–624, 644–645
Ibn Khallikan, 619
Ibn Misjah, 619
Ibn Sina, 93, 326, 366, 378–380, 384, 435, 610, 614,
625, 628, 636, 666–689, 692–696, 703, 715–716,
722, 727, 744, 749–755, 758–759
Ibn Suraij, 619–620
Ibn Zaila, Al-Husain, 628
Ikhwan al-Safa (Brothers of Sincerity), 620–622
Impedance
acoustic
critical, 197
non-critical, 197
of duct, 233
of room, 199
of tube, 198
definition, 120, 127, 129, 197, 233
mechanical
critical, 120–121, 124
radiation impedance, 129
of soundboard, vs. infinite plate, 122–124
non-critical
of air at soundboard (radiation impedance),
129
of plate, 123
of string, 121
specific acoustic
critical, 127
non-critical, 127–128
of air (characteristic impedance), 128–129
Bharata, 540

grama (tone-system, tuning, or parent scale), 547

jati (melodic mode), three different types

1. **samsarga** (combined), 549–550
2. **suddha** (pure), 548–550, 552–554
3. **vikrta** (modified), 548–550, 552, 555–556

laksana (properties) of, 547–548, 552, 554–555, 558–559, 602n.30

possible influence on, 556–557

dastgah, 691

maqam, 738

patet, 512

rasa (qualities) of, 547, 557–560

raga (charm) of a note, 560–561

songs, of the theater

dhruva, 558–560

gana, spurious text, 559–560

characteristics of, 560

gitaka, 558

sruti (interval)

of 22-**sruti** scale, ratio analysis of **Sa-grama** and **Ma-grama**, 544–547, 550–551

definition, 540

of harp-**vina** tuning experiment, 541, 543–544

of **jatis**, 554–555

pramana (typical), 541–543, 547

of **Sa-grama** and **Ma-grama**, 540–541, 544–545

svaras (notes)

7 **svaras** of **Sa-grama** and **Ma-grama**, 540–541

of 22-**sruti** scale, ratio analysis of **Sa-grama** and **Ma-grama**, 544–547

definition, 540

suddha (pure), 566

of **svarasadharana** (overlapping note), ratio analysis of An and Ka, 549–551

vina (harp-**vina**), 541–544, 547, 550–551, 553, 564

gramaragas

definition, 562

and **laksana**

of Kudimiyamalai inscription, 562–564

of Matanga, 562–564

of Narada, 562–564

of Sarngadeva, 562–564

Matanga, 556

4 **suddharagas** (pure ragas), 562–563

raga (elements of melodic sound), first formal definition, 561–562

Narada, 559

7 **gramaragas**, first complete compilation, 559

gramaraga

first formal definition, 560

or **gana** (song), 559–561, 563–564

guna (qualities) of, 560

Sarngadeva, 548

gramaraga, 562–564

suddha jatis and **laksana**, definition, 548

svaras

suddha, 566

vikrta, 566

North India

Bhatkhande, 587

10 most popular **Thats**, 581, 596

Bilaval That, modern **suddha scale**, 592–593, 600

Narayana and Ahobala, 587

12-tone **vina** tuning, 587–592

samvaditva (consonant intervals), 590–592

suddha svaras (pure notes), 587

vikrta svaras (modified notes), 590

raga, 558, 564, 576, 585

Roy, 595

32 **Thats**, of eight-by-four matrix system, 595–596

chromatic Thats, not used, 593–594

sitar

construction of, 597

melodic, drone, and **cikari** strings, 597–599

moveable frets, 597–598

definition, Sachs, 597

letter-dot notation, based on Cheve System, 598–599

Shankar’s mastery of String II, Junius, 597

tuning of, example, 598

That

definition

Bhatkhande, 594

Kaufmann, 594

vs. modern **mela** of South India, 594

South India

Govinda, 565

mela raga

14 most popular **mela ragas**, 581

72 abstract **raga**-categories, 565

72 musical heptatonic **scales**, first formal implementation of, 565

krama (straight) or **vaktra** (zigzag) sequences, 565
two-directional krama (straight)
sampurna (complete) principle, 579–582
alphanumeric prefixes, 580
Kanakangi-Ratnangi system, 580–581
critique of
Iyer, 582–584
K.V. Ramachandran, 584–585
N.S. Ramachandran, 580
Mela
Chakravakam, 580–581
Kharaharapriya, 574, 581
Mayamalavagaula, 574, 580–581
Natabhairavi, 576, 581
vs. Venkatamakhi’s melakartas, 580
raga, 558, 564, 576, 585
Ramamatya, 565
12-tone practical scale, suddha mela vina
tuning, 569–573
Antara Ga and Kakali Ni, elimination of, 572
14-tone theoretical scale, 566–567
7 suddha svaras, 566–568
7 vikrta svaras, 566–568
denominative raga, definition, 574
every example of, Mela Sri-raga and Sri-raga, 574–576
janaka (parent) raga, abstract raga-category, 574
janya (born, or derived) raga
definition, 574
laksana properties, absence of, 574, 576
musical raga, 564–565
Raga Mechabauli, 574–575
Raga Suddhabairavi, 574–575
Sri-raga, 575–576
modern Sadjagrama, Rao, 576
svara
anya (foreign note), 575–576
vakra (note out of order), 575
varjya (omitted note), 575
mela (unifier) ragas
abstract raga-category, 565
definition, 574
Mela Malavagaula, 574–575
Mela Sri-raga, 574–576
vs. Venkatamakhi’s melakartas, 578
Venkatamakhi, 565
12-tone scale; new and modern svara
names; ratios by Ramamatya, 576–577
72 Melakartas, of twelve-by-six matrix
system, 565, 577–579, 581
19 melakartas, most popular in
Venkatamakhi’s time, 577–579
36 vivadi (dissonant) melas, or chromatic melas, not used, 579, 582, 593–594, 607n.119
Venkatamakhi’s avoidance of, Iyer, 582–583
denominative raga, definition, 574
every example of, Mela Gaula and Raga Gaula, 574
janya (born, or derived) raga
definition, 574
laksana properties, absence of, 576
musical raga, 564–565
Raga Gaula, 574–575
melakartas
14 most popular mela ragas, 581
abstract raga-categories, 565
definition, 577–579
Mela
Bhairavi, 576, 579, 581
Gaula, 579, 581
Malavagaula, 575, 579, 581
Sri-raga, 575, 579, 581
Indian scales. See Scales, Indian
Indian tetrahedrons. See also Scales, Indian
North Indian theory
Bhatkhande, 587
10 most popular Thats, 581, 596
Roy, 595
32 Thats, of eight-by-four matrix system, 595–596
chromatic Thats, not used, 593–594
South Indian theory
Govinda, 565
72 musical heptatonic scales, first formal
implementation of, 565
Kanakangi-Ratnangi system, 580–581
Venkatamakhi, 565
72 Melakartas, of twelve-by-six matrix
system, 565, 576–579, 581
36 vivadi melas, chromatic melas, not
used, 579, 582, 593–594, 607n.119
Indonesian scales. See Gamelan; Scales, Indonesian
Ingard, K. Uno, 149
Inharmonic strings
coefficient of inharmonicity
diameter effect on, 110, 118, 134–135, 808–809
frequency effect on, 110, 809
length effect on, 110, 809
steel stringing constants, logarithmic
plain string, 110
wound string, 115
of string
harpsichord, average values, 111
piano, average values, 110–111
piano vs. harpsichord, 126
plain, 110–111
wound, 114–115
tension effect on, 110–111
Index

Inharmonic strings (Continued)
dispersion
 definition, 104
 and wave speed, effective, 104–107
inharmonicity
 analysis of, stringing and restringing, 110–111, 118
 cent calculation, strings and modes, 108–112
 length, effective
 and effective wavelength, 99, 101–102
 stiffness parameter effect on, 101–102
 vs. measured length, 101–102
mode
 cents equation, 110
 definition, 98
 frequency equations, 99
 shape, first four modes, 101–102
 node, two different kinds, 101–102
piano tuning, 118, 135–137
 stretched octaves
 in bass, tuned flat, 112–114
 in treble, tuned sharp, 111–112
restoring force
 experiment, 104
stiffness effect
 experiment, 104
 on mode
 cents, 110
 frequencies, 98
 shape, 101–102
 on wave speed, effective, 99, 104–106
 on wavelength, effective, 99, 101–102
stiffness parameter
 diameter effect on, 100
 frequency effect on, 100
 length effect on, 100, 105
 steel stringing constant
 plain string, 100
 wound string, 114
 of string
 plain, 99–100, 111
 wound, 113
 tension effect on, 99–100, 111
tone quality. See also Beat rates
 beat rate, 108, 135–136, 138, 140
 of harmonics
 coincident, 136ff.
 flexible canon strings, 141–142
 stiff piano strings, 140–141
 intermediate, 137ff.
 of keyboard instrument
 Benade, 126
 Fletcher, 135
 mode number effect on, 140–142
perception of, dissonance effect, 108, 118, 135, 138–141
 thick string vs. thin string, 104, 118, 135, 141–142
wave speed, effective, 106
 and dispersion, 104–105
 experiment, 104
 mode number effect on, 105–106
 stiffness parameter effect on, 106
Inharmonicity. See Inharmonic strings
Interference. See Inharmonic strings

Interference
 definition, 48
 in infinite tube, constructive and destructive, 200–203
 in string
 constructive, 47–48, 51–52
 destructive, 48–49, 51–52
Interval ratios. See Flexible strings, ratios
Isothermal bulk modulus, liquids, 188
Iyer, T.L. Venkatarama, 582

J
Jairazbhoy, N.A., 541, 594, 596
Junius, Manfred M., 597

Just intonation
 commensurable numbers of, 365–366
 Galileo, 283
 definitions, two different kinds, 365
Mersenne
 harmonic-diatonic system, 404–405, 408, 436
 harmonic series
 as infinite series, not defined, 404–406, 420
 as limited series
 discovery of the first six harmonics, 404–408
 influenced by personal convictions, religious and moral, 407–408
 Ptolemy's Tense Diatonic, 407
 Zarlino's Senario, 407
harmonics
 first 14 trumpet harmonics vs. length ratios
 of "old" trumpet marine, 410–412
 "leaps" of natural trumpet vs. harmonics of monochord, four identical ratios, 406
 "leaps" of trumpet marine vs. harmonics of monochord, five identical ratios, 406
 length ratios of "new" trumpet marine vs. "old" trumpet marine, 410–415
 with prime numbers greater than 5, not acknowledged, 408, 412, 415
 problems comprehending cause of; no knowledge of traveling waves, 404, 422–423
 solved by D'Alembert, 423
 three different terms for, 404
theory of consonance
based on Benedetti’s observations, mechanical motions of strings, 415–416
contemplated ratios vs. endorsed ratios, 416–419
7-limit ratios
detailed analysis and conflicted rejection of, 417–420
qualified acceptance of ratios $\frac{8}{7}$ and $\frac{7}{6}$, 420
origin of, Ptolemy’s theory of graduated consonance, 321–326

Meyer
7-limit Tonality Diamond, original design, 448–452, 824
8 tonalities of, 449–451
13-tone scale of, 449
minor tonality as inversion of major tonality, 452
moveable boundaries of, 451–452
origins of
in Rameau’s dual-generator, 444–446, 448–449, 452
in triangular tables of
Al-Jurjani, 401–402, 448
Salinas, 402–403, 448, 452
“table of spans,” original description, 451
on 11-limit ratios, 448
plagiarized by Partch, 452–453

Partch
11-limit Diamond Marimba
36 bars of, frequency ratios, 452–455
minor tonality as inversion of major tonality, 454
Otonality and Utonality, theory of, 453–454
43-tone scale, 454–457
7 ratio pairs, to fill chromatic gaps of
11-limit Tonality Diamond, 454–455
29 ratios, 67% of 11-limit Tonality Diamond, 454–455
tuning lattice of, Wilson, 455–457
Meyer’s 7-limit Tonality Diamond, three changes to, 452–453, 824
Monophony, theory of, 453
Zarlino’s philosophy of Unita (Unity), 429, 484n.359
Rameau’s dual-generator, 444–446, 454

Rameau
Demonstration du principe... (1750)
minor tonality attempted to rationalized, 446–447
failed to rationalize, 447
as inversion of major tonality, Shirlaw, 448, 452
‘relative’ minor, origin of, 447–448
subharmonic series, Rameau’s recantation of, 446

Generation harmonique (1737)
7-limit ratios, rejection of, 440
generator (dual-generator), function of, 444–446
harmonic progression of fractional string lengths, modern length ratios, 440–443
and Zarlino’s ancient length ratios, same definition of major tonality, 441
harmonic series
consonances produced by nature, 440–441
major tonality, directly related to fundamental, 441
minor tonality, not directly related to fundamental, 441–446
subharmonic series, fallacy of, 441–446

Nouveau systeme... (1726)
harmonic generation, theory of, 436
harmonic series
hierarchy of consonances, 438
“major third,” directly related to fundamental, 438
“minor third,” not directly related to fundamental, 439–440
of single strings, 436–438
Mersenne and Sauveur, acknowledged, 436

Traite de l’harmonie (1722)
7-limit ratios, rejection of, 434
arithmetic progression of vibration numbers, frequency ratios, 428–434
vs. Zarlino’s ancient length ratios, diametrically opposed descriptions of major and minor tonalities, 434–436
harmonic generation, theory of, 428–429, 434
harmonic progression of fractional string lengths (length ratios)
knowledge of, 433–434
not included, 431
of Stifel’s string length integers (length ratios), 428–430, 432–434
least common multiple (LCM), of length numbers, 432–433
Zarlino’s philosophy of Unita (Unity), 429–431
Senario, 434, 440

Ramis
5-limit ratios, four different kinds, 366–367
12-tone scale, 367–373
with a default schismatic fifth, 372–375
Just intonation (Continued)

vs. Saff Al-Din’s scale, with six schisma variants, 373–375
vs. Stevin’s 12-TET, 375–377

Roberts
harmonic series
as infinite series
of discrete flageolet tones, 421
of natural trumpet tones, 421
as series of simultaneously sounding harmonics, not defined, 421–422
harmonics, with prime numbers greater That 5, considered defective, 421

Salinas
7-limit ratios, rejection of, 403
harmonic division of ratio $\frac{5}{4}$, 403
triangular table, 402–403
arithmetic division of ratio $\frac{5}{4}$, 402–403
origin of, Al-Jurjani, 401–402
Zarlino’s Senario, 401–403

Sauveur
‘acoustique’, science of sound, 422
discoveries on vibrating strings
‘noeuds’ (nodes) and ‘ventres’ (antinodes), 422
significance to other vibrating systems, 426
simultaneous subdivisions/mode frequencies, 422–423
‘sons harmoniques’, consistent with intervals of harmonic divisions and harmonic series, 422, 427–428
standing wave of fifth harmonic, 424–426
harmonic series, as an infinite series
discovery of, 422–424
historic significance of, 426–427
no knowledge of traveling waves, 423
first thirty-two harmonics of strings and wind instruments, 423–424

scales
3-, 5-, and 7-limit scales vs. $\frac{3}{4}$-Comma
Meantone and 12-TET scales, 376–377
prime number limit of, 282. See also Limit of 3; Limit of 5; Limit of 7

Stifel
division of “double-octave and a fifth,”
ratio $\frac{5}{4}$, into four arithmetic and four harmonic means, 386–390
on the importance of both divisions, 401
plagiarized by Zarlino, 378, 389

Wallis
experiments, sympathetic resonance, 420–421
nodes
discovery of, 420–421
Sauveur’s acknowledgment, 426
infinite number of, not defined, 421–422

Zarlino
major and minor tonalities, origins of, 377–378, 391–397, 399–401
arithmetic and harmonic divisions of “fifth,” ratio $\frac{5}{4}$, 399–400
Stifel’s arithmetic and harmonic divisions of ratio $\frac{5}{4}$, 392–397
numero Senario (Number Series 1–6), 377–378, 381–384, 390–397
rationalized consonance of “major sixth” and “minor sixth,” 397–399
Western theory of consonance, modern, 400–401
philosophy of Unita (Unity), corporeal or spiritual manifestations, 429, 484n.359

Just Keys
Plate 6, 850
score, “The Letter,” from Ellis Island/Angel Island
description of, 811, 824
tablature score, 812–817
traditional score, 818–823
tuning of, 808–811

K
Kanon, See Canons
Kasaya, 562
Kaufmann, Walter, 490, 578, 594
Kepler, Johannes, 336, 418
Khan, Vilayat, 599
Kitharas
description
Maas and Snyder, 618–619
Sachs, 617–618
tension, only variable after stringing, 323
tuning limitations
four significant structural problems, 617–619
GPS not tunable, 619
of gut strings, 618
Krishan, Gopal, 599
Kudimiyamalai inscription, 561–564

L
Lachmann, Robert, 612
Lath, Mukund, 545, 550
Latin ratios
classification
multiple-superparticular, 284–285
multiple-superpartient, 284–286
superparticular (epimore), 284, 385
Al-Farabi, 661
Ibn Sina, 678–679
Mersenne, 417–418
Zarlino, 397
superpartient (epimere), 285, 385
Al-Farabi, 661
Zarlino, 398
interval

sesqui prefix, definition, 384
sesquialtera, 384–385
Mersenne, 417
Zarlino, 385–386, 392
sesquioctava, 384–385
Mersenne, 417
Zarlino, 385–386, 398–399
sesquiquarta, 384–385
Mersenne, 417
Zarlino, 385–386, 399
sesquiquinta, 385
Mersenne, 417
Zarlino, 385–386, 398–399
sesquitertia, 384–385
Mersenne, 417
Zarlino, 398

Length ratios. See Flexible strings, ratios

Limit of 3
Al-Kindi, of original 12-tone “double-octave” ud tuning, 615
Chinese 12-tone scale, spiral of eleven ascending “fifths,” 487–488
definition, 282
Philolaus, of original Diatonic Tetrachord, 299–301
Pythagorean theory, 288, 336, 367
Safi Al-Din, of original 17-tone ud tuning, 712
tunbur of Khurasan, 704
Western and Eastern music, two 12-tone scales, spirals of ascending and descending “fifths,” 335

Limit of 5
Al-Farabi, on consonance of ratios ¼ and ⅖, 326, 655–658
Bharata, of Sadjagrama and Madhyamagrama, 546
compared to 12-TET, 377
Gaffurio, rejection of, 367
Mersenne, of 12-tone lute scale, 358–359
Ptolemy
argumentative acceptance of, 288
original emmelic/melodic classification of, 325–326
of Tense Diatonic Scale, in Zarlinos, 233
Pythagoreans, rejection of, 288–289
Ramis, of original 12-tone monochord scale, 372–373, 376
Zarlino, of numero Senario, 381–384, 397–399

Limit of 7
compared to 12-TET, 377
Forster, of Just Keys, 808–811
Huygens, consonance of ratios ⅙, ⅞, and ⅝, 364–365
Mersenne
conflicted rejection of, 417–420
qualified acceptance of ratios ⅞ and ⅝, 420
Meyers, of original Tonality Diamond, or “table of spans,” 448–451
Ptolemy, of Soft Diatonic Scale, 334, 832
Rameau, rejection of, 440
Salinas, rejection of, 403

Limit of 11
Al-Farabi
of Jins 2 tetrachord, 653–654, 679–680
of middle finger of Zalzal fret on ½, 636–339, 643
Javanese slendro and pelog scales, close rational approximations, 510–511
Partch, of Diamond Marimba, 452–454
Ptolemy
of Even Diatonic Scale, 329, 679–680
of Tense Chromatic Scale, 331

Limit of 13
Forster
of Bass Marimba, 827
of Diamond Marimba, 824–825
of Glassdance, 831
Ibn Sina
of Diatonic Genus 4 and 7 tetrachords, 676, 679–680
influence on modern Persian dastgahs, 686–689, 692–696
of Zalzal frets on ud, 671, 674

Limit of 17
Al-Farabi, of Persian middle finger fret on ud, 636–639, 643, 674

Limit of 19
Eratosthenes, of Enharmonic and Chromatic Scales, 330–331
Forster
of Chrysalis, 796–797
of Harmonic/Melodic Canon, 798–799
Ibn Sina, of Chromatic Genus 11 tetrachord, 676

Ling Lun, 485
Litchfield, Malcolm, 308–309, 311, 317

Little Canon
construction of, 834–836
dimensions, 837–838
Plate 12, 856
tuning of, 837
Liu An, 500–501
Locana, 594

Logarithm. See Cents

Loops. See Flexible strings

Lutes. See also Tunbur; Ud
description of, Sachs, 597
etymology of, Farmer, 610
experiment with, Wallis, 421
Lutes (Continued)

inheritance of, from the Arabian Renaissance, 610–612
moveable frets of
lute and ud, 632, 669–670
sitar, 586
tunbur of Khurasan, 696, 701–704
of North India
sarangi, 600
sitar, 597–598
of Persia, tunbur of Khurasan, 696
of South India, vina, 543, 586
tuning
¼-comma meantone vs. approximation of 12-TET, 340, 348–349, 354
of “semitone,” ratio \(\frac{19}{17}\)
Al-Farabi
12 equal “semitones” per “octave,” 355
on two different uds, 354–355, 639, 643
approximation of 12-TET
in concert music, Cardan, 355
fretting instructions
Galilei, 356
Mersenne, 356–359
origin of, Ptolemy, 354–355

Lyres

description
Maas and Snyder, 618–619
Sachs, 617–618
tension, only variable after stringing, 323
tuning

designs
of ancient Greece, 289
of Arabian sinsimiyga, modern, 787n.228
of Pythagoras, 293
of Terpander, 291–293
limitations
four structural problems, 617–619
GPS not tunable, 619
of gut strings, 618

M

Maas, Martha, 618

Major tonality. See also Minor tonality
of 7-limit ratios
16-tone scale, 420
Meyer’s tonality diamond, 449–452
of 11-limit ratios, Partch
43-tone scale, 454–457
Diamond Marimba, 453
Otonality, 453–454
Al-Farabi’s ‘Diatonic Mode’, 645
definition, harmonic division of “fifth,” of ancient length ratios \(\frac{1}{2}\), 396–397
Zarlino, 377–378, 399–401

Rameau, harmonic progression of modern length ratios, 440–443
of dual-generator, 444–446
Marcus, Scott Lloyd, 749, 759–762, 767–771
Marimba bars. See Bars, rods, and tubes
Marimbas. See Bass Marimba; Diamond Marimba
Martopangrawit, Raden Lurah, 513, 517, 519–521
Mashaqah, Mikhail, 759
Mass, 5–6, 12, 17, 23. See also Mass per unit area;
Mass per unit length; Mica mass
air mass, of cavity resonator, 212–215, 221
definition, 1–2, 8
density, 1, 23
of air, 23, 892
of the earth, 6
of fluid (liquid or gas), 4, 21
of solid, 4, 16
English Engineering System, 9, 12, 16
pounds-mass, 7ff.
experiment, 7–8
inconsistent system, 9, 16
lbm-to-mica conversion factor, 14, 880
English Gravitational System, 9–10
slug, 1, 9ff.
consistent system, 9–10
experiment, 10–11
slug-to-mica conversion factor, 880
English mass unit, undefined, 1, 13, 16
experiment, 7–10, 15
and frequency, 1, 4, 16, 18–21
of glass, snifter, 830–831
inertial property, 1–2, 4, 8
metric system
gram, 1
gram-to-mica conversion factor, 880
kilogram, 1
kg-to-mica conversion factor, 24, 880
Newton, 1–2, 5–7
of spring-mass system, 183–184, 223n.9
of string
plain, 2–3, 18–19, 338, 792
wound, 806
Mass per unit area
of plate, 123
of soundboard
harpsichord, 125–126
piano, 123–124
Mass per unit length
of bar, 158
of cylinder
hollow, 38
solid, 38
of stiffness parameter
plain string, 100
wound string, 113–114
of string
 plain, 4, 18–19, 27–29
wound, 36–41
Mass per unit volume. See Mass, density; Mica mass, density
Matanga, 556, 561–562, 572
McPhee, Colin, 522–528, 530–533

Means, 86
 arithmetic, and minor tonality, 90–91
 arithmetic-geometric asymptote, 313–314
definition; arithmetic, harmonic, and geometric, 86
 Archytas, 87–89
harmonic, and major tonality, 90
interpretations of, ancient length ratio vs. frequency ratio, 87–91, 93
Plato, description of, 91–92
 explanation by
 Nicomachus, 92
 Plutarch, 93
Stifel, division of “double-octave and a fifth,” ratio \(\frac{3}{4} \), into four arithmetic and four harmonic means, 386–390, 401
Zarlino, arithmetic and harmonic divisions of “fifth,” ratio \(\frac{3}{4} \), 399–400
 incorporation of Stifel’s arithmetic and harmonic divisions of ratio \(\frac{3}{4} \), 390–397
 origins of major and minor tonalities, 377–378, 396–397, 399–401

Meantone temperaments

Aron’s \(\frac{3}{4} \)-comma Meantone Temperament, 342, 347
 \(\frac{3}{4} \) syntonic comma
calculation of, 344
cumulative reduction of four consecutive “seconds,” 344–345
comparisons to 3-limit, 5-limit, 7-limit, and 12-TET scales, 376–377
harmonic analysis of, twelve usable keys, 346–347, 349–350

Huygens centroid comparisons
comparable intervals of 31-TET, 363–364
 “fifth” of 31-TET, 363
three septimal ratios; \(\frac{7}{6} \), \(\frac{7}{5} \), and \(\frac{7}{4} \), 364
key color of, unequal temperament with two different “semitones,” 349
syntonic comma (comma of Didymus), definition, 343–344
tuning
 lattice, 345
sequence, three steps, 344–346
vs. Werckmeister’s No. III Well-Temperament, 352–353
“wolf fifth” and “wolf fourth” of, 346–347

Zarlino, 401
vs. \(\frac{3}{4} \)-comma meantone temperament, 343
based on irrational length ratios; geometric division of canon strings, 336–337
Euclid’s method, mean proportional, 297–298
interpretation of
 Chuquet, 399–341
 Zarlino, 338–339
on keyboard instruments, 336, 340
vs. fretted lutes and viols, 348
meantone, definition, 342
good geometric division of “major third,” ratio \(\frac{3}{4} \), on canon string, 342–343
origin of, Ramis’ advocacy of 5-limit “major third,” ratio \(\frac{3}{4} \), 340–342, 375
Meyer, Max F., 448–453, 824
Mica mass, 14–16, 18, 23
 acronym, 14–15
 consistent system, 14–15
definition, 14–15
 user defined units, 23
density
 of bar making materials, 885
 of bronze, modified, 37
 of copper, modified, 40
dimensional analysis, 23
gases, 892
 of liquids, 890
 of solids, 888
string making materials, 882
dimensional analysis, 17–20, 22–23
 experiment, 15
mica-to-kg conversion factor, 24, 880
mica-to-lbm conversion factor, 14, 880
new mass unit, need for, 1, 13, 25n.19

Minor tonality. See also Major tonality
of 7-limit ratios
 16-tone scale, 420
 Mersenne, conflicted acceptance/rejection of, 418–420
 Meyer’s tonality diamond, 448–452
of 11-limit ratios, Partch 43-tone scale, 454–457
 Diamond Marimba, 453
 Utonality, 453–454
Al-Farabi’s ‘Persian Mode’, 645
definition, arithmetic division of “fifth,” of ancient length ratio \(\frac{3}{4} \), 396–397
Zarlino, 378, 399–401, 452
as inversion of major tonality
 Meyer, 449–452
 Rameau, 444–446, 452
Shirlaw, 448, 452
"Minor tonality (Continued)

Rameau, arithmetic progression of ancient length ratios, 441–444 of dual-generator, 444–448

Mode shape, 98
Modes. See Scales
Modulus of elasticity. See Young’s modulus of elasticity
Mohammed, 610
Monsour, Douglas, Dedication Page, 843
Morse, Philip K., 149
Musical slide rule. See Cents, logarithm

N
Napier, John, 257, 340
Narada, 559–560, 564, 572
Narayana, 93, 587–592
Nederveen, Cornelis, J., 227–230, 233, 235–238, 244
Needham, Joseph, 487
Newton, Isaac, 1, 428
laws of motion
first, 2, 5, 8, 11, 158, 186
second, 5–7, 9, 15
Nijenhuis, E. Wiersma-Te, 545, 556, 560
Nodes. See Bars, rods, and tubes; Flexible strings; Inharmonic strings; Just intonation, Sauveur; Just intonation, Wallis; Resonators, tube
Numero Senario. See Just intonation, Zarlino

O
“Octave” equivalence. See Cents
Old Arabian School, 619–620, 636
Ornstein, Ruby Sue, 524, 530–531

P
Palisca, Claude V., 356, 415
Partch, Harry, v, 452–457, 824, 840
Period. See Flexible strings
Persian musical terms. See also Scales, Persian
dastan (fret), 628, 630–632
dastgah Mahur, pishdaramad (overture), 771–773
instruments
tar and setar (three strings), 597, 687–689
tunbur of Khurasan, 696–697, 701–704
ud al-farisi, ancient lute, 619
mode
5 hierarchical functions of tones: aqaz, shahed, ist, [finalis], and moteqayyer, 690–694, 772
vs. laksana, 691
12 Modern Dastgaha (sing. dastgah), Farhat, 692–696
dastgah, group of modes/dominant mode, 690ff.
gushe, individual mode, 690ff.
vs. raga, 690
musical notation sign
koron, 636–640
sori, 636, 640
Persian scales. See Scales, Persian
Persian tetrachords, modern
all 12 Dastgaha on Ibn Sina’s ud, 687–689, 692–696
Farhat
of 12 Dastgaha, 692–693
chromaticism, not used, 687 of Mahur, intervalic structure, 771–772
Pianos
Cristofori, gravicembalo col piano e forte, 118, 130
design change ideas, 142
impedance ratio
air-to-soundboard, 129
soundboard-to-string, 125
inharmonicity
analysis of, 110–111
coefficients of, plain strings, 111
effect on
beat rates, uncontrollable, 105, 108, 135
timbre, 110–111, 118, 135
tuning, 111–112, 118
tuning possibilities, 105, 108, 118, 135, 808–809
limitations, structural and musical
soundboard, thickness, 133–134
string tension, total force, 134–135
tuning, inharmonicity, 134–135
soundboard
bending wave speed, 131–132
components
bridges, 124
liners, 124
ribs, 123–124
critical frequency, 130–133
dimensions, typical
surface area, 129
thickness, 123
impedance
data, Wogram, 122–124, 129–130, 132–133
plate vs. soundboard, 123–124
radiation, of air at soundboard, 129
sound radiation, 132–133
spruce
European (Picea abies), 886n.8
Sitka (Picea sitchensis), 123, 885
stringing scale
1.88 : 1, need for, 34
2:1, structural problems of, 33
strings
coefficients of inharmonicity, 109–111, 126
dimensions and tension, typical
 bass, G₂, 40
treble
 D₄, 121
 G₃ and C₄ ... G₇ and C₈, 111
energy transfer, to soundboard, 118–119, 125
impedance, D₄, 122
length vs. diameter, changes in, 115
stiffness parameters, 111
tension equation
 plain, 31
 wound, 41
wound, need for, 27, 34
tuning process, general, 302
12-TET, 136
 of “fifth,” 136
 of “fourth,” 137
 of “major third,” 136–137, 139–140, 146n.28
vs. harpsichords
coefficient of inharmonicity, average values, 126
critical frequency of soundboard, 132–134
impedance ratio
 air-to-soundboard, 129–130
 soundboard-to-string, 125–126
sound radiation, 133
soundboard thickness, string tension, and inharmonicity, 130
Plain strings
equations
 diameter, 31
 frequency, 27, 31
 length, 31
 mass per unit length, 28–29
 tension, 31
four laws of, 31–32
length
 and frequency, inverse proportionality, 32–33
piano stringing, structural problems, 33–34
piano stringing scale, treble strings, 34
tension
 break strength
 calculation, 35, 40, 134
 definition, 35
 considerations; structural, technical, and musical, 35
 instrument limitations, 35
Plane sections. See Bars, rods, and tubes
Plato, 91–93, 288, 308, 610–611, 624–625, 759
Plutarch, 82, 85, 91–93
Poerbapangrawit, Raden Mas Kodrat, 513, 517–519, 521–522
Poisson’s ratio
 of hardwood plywood, 222
 of Sitka spruce, 123
Powers, Harold S., 580–582, 586
Praetorius, Michael, 336, 349, 610
Pressure
 adiabatic bulk modulus, 21–22
 in cavity resonator, 212–214, 216–219, 226n.50
 definition, 22
 dimensional analysis, 22
driving
 of acoustic (wave) impedance, complex, 197
 specific, 127–128
 of bar, 196, 214, 217–218
 definition, 127
 of soundboard, 128
 of tube resonator, 198–199
English system
 of air
 at 1 standard atmosphere, 22
 adiabatic bulk modulus, 22
 psi, 13, 22
at flute embouchure and tone hole, 240–241
of gas, 188
wave
 in air, 130–131, 182–184
 of bar, 214, 217
 in flute, 230, 234, 239, 247
 of plane wave, 186–187
 in tube resonator, 189–195, 198–199, 200–208
Young’s modulus of elasticity, 13
Pulse. See Waves
Pythagoras, vi, 44, 82–83, 280, 284, 288–289, 293–295
Pythagoreans, 288, 308, 318–319, 322–324, 336, 657
Q
Quadrivium, 630
R
Racy, Ali Jihad, 760–761
Radius of gyration. See Bars, rods, and tubes
Rai, I Wayan, 524–525, 529–530
Ramachandran
 K.V., 584–585
 N.S., 580
Ramamatya, 93, 565–580, 582, 584, 586–587, 599
Ramis, Bartolomeo, 93, 340, 342, 358, 366–377, 401
Rao, T.V. Subba, 576

Rarefaction. See Compression and rarefaction

Ratio of specific heats
- of adiabatic bulk modulus, 22
- of gases, 892
- of liquids, 890

Ratios. See also Ancient length ratios; Arabian ratios; Flexible strings, ratios; Greek ratios; Latin ratios

integer, definition, 71, 281

numbers That compose commensurable vs. incommensurable, 365–366

Galileo, 283

composite
definition, 281

prime factorization, 281–282

irrational
cube root of 3, Archytas, 283
definition, 283

square root of real Chuquet, 339–341

Euclid, 283, 297–298

Zarlino, 338–339

positive natural; odd, even, and prime, 281

prime
definition, 281

factorization, 281–282

limit, definition, of intervals and scales, 282. See also Limit of 3

rational
definition, 281
two types, 282–283

Ray, Satyajit, 600

Resonators
cavity
- air mass, in neck, 212–213
 - actual, 215, 221
 - theoretical, 214
- air spring
 - in cavity, 212–213, 215–216
 - at sidewalls, 217–219, 221
- air spring-air mass system, two different kinds, 212–213, 217–219

end correction
- of duct opening, 214
- of flange opening, 214
 - and frequency, inverse proportionality, 215

frequency, 215
- equation, limitations of, 212
- theoretical vs. actual, 217

Helmholtz, 212

making, size considerations, 218–221

neck, effective length of, 212–215

reason for, 212

sidewall stiffness, 221–222

tuning process
- attack tone vs. decay tone, 222
 - at opening, 215–217, 222
 - at sidewalls, with tuning dowels, 219–221

tube
- antinode (closed tube), 203
 - displacement (DA), 205, 207–208
 - pressure (PA), 205
- antinode (infinite tube)
 - displacement (DA), 201–203
 - pressure (PA), 201–203
- antinode (open tube), 203
 - displacement (DA), 204
 - pressure (PA), 204

closed, 203
airtight seal, making, 211
end correction, 207–209
- and diameter, direct proportionality, 208
- and frequency, inverse proportionality, 211

frequency
- actual, 210
- theoretical, 207

length
- cut, 210
- measured vs. effective, 207–208
- theoretical, 207

closed-closed
- frequency, theoretical and actual, 230
- length, measured and effective, 230

impedance, acoustic wave, 197
- bar-to-resonator relation, 198
- of resonator, 196–197
- of room, 199
- of tube, 198

- tube-to-room ratio, 199
	node (closed tube), 203
- displacement (DN), 205
- pressure (PN), 205, 207–208

node (infinite tube)
- displacement (DN), 201–203
- pressure (PN), 201–203

node (open tube), 203
- displacement (DN), 204
- pressure (PN), 204

open, 203
end correction, 209

frequency
- actual, 209
- theoretical, 206

length
- cut, 209
- measured vs. effective, 229–230
- theoretical, 206
Index 919

pulse reflection
at closed end
compression, 190, 192
rarefaction, 190–191, 193
at open end
compression, 191, 194
rarefaction, 191, 195
reason for, 196
standing waves, pressure/displacement
closed, 203, 205, 208
closed-closed, 230
infinite, 201
open, 203–204, 230

Restoring force
of bar
clamped-free, 174–177
free-free, 147–148, 154–162
bending stiffness
of bar, 152, 154–155, 158–160
of plate, 123
of rod and tube, 158
of soundboard
harpischord, 125
piano, 123, 130–132
of cavity resonator, 226n.50
definition, 2
elastic property, 2–4, 21
of fluid, 4
of glass, snifter, 830–831
of plane wave, 186–187
of solid, 4
of spring-mass system, 226n.50
of string. See also Downbearing force
flexible, 1–4, 18–19
stiff, 104–105, 107–108

Roberts, Francis, 421–422
Robinson, Kenneth, 503
Rods. See Bars, rods, and tubes
Roy, Hemendra Lal, 595–597

S
Sachs, Curt, 489, 556, 597, 617–618
Safi Al-Din, 93, 326, 366, 373–375, 379, 381, 384,
401–402, 610, 622, 626–627, 673, 696, 705,
707–733, 735, 737, 740–745, 747–749, 754–755,
758–759, 763–768, 771
Salinas, Francisco, 401–403, 448, 452
Sarngadeva, 548, 562, 566–567, 572, 576
Saunders, Lawrence, viii
Sauveur, Joseph, 390, 422–428, 436, 438
Scales, 86. See also Arabian musical terms;
Arabian ratios; Arabian tetrachords;
Equal temperaments; Greek ratios; Greek
tetrachords; Indian musical terms; Indian
tetrachords; Just intonation; Meantone
temperaments; Persian musical terms; Persian
tetrachords; Turkish musical terms; Turkish
tetrachords; Well-temperaments
Arabian
8 tetrachords, origins in near-equal divisions
of intervals; Ptolemy, Al-Farabi, and Ibn
Sina, 677–681
24-TET, modern scale, 755–761
46 Modern Magamat, 761–771, 786n.209
9 fasal, for the construction of, 762
16-tone scale, for the playing of, 770–771
of Al-Farabi
3 standard modes, 7-tone scales, 644–646
3 tetrachordal conjunct/disjunct systems;
in the context of GPS, 662–666
8 Ajnas, tetrachords, 640–641, 646–655
10-fret ud tuning, theoretical, 632–639
15 tetrachords, 2 genera, 658–663
17-tone scale
original tunbur, 703–707, 735
tunbur of Khurasan, 696–697, 701–704
22-tone scale, ud tuning, 640–643
of Al-Kindi, original 12-tone scale, ud tuning,
611–617
of Al-Munajjim, 8 majari, 7-tone scales,
621–625
of Brothers of Sincerity, 9-tone scale, ud
tuning, 620–622
of Ibn Sina
11 Melodic Modes, 681–686
16 tetrachords, 3 genera, 673–676
17-tone scale, ud tuning, 666–673
of Safi Al-Din
17-tone scale
ascending spiral of “fourths,” original
construction, 731–733
First Ud Tuning, 707–713
monochord/ud tuning, 717–719
tunbur/ud tuning, 720–721
Second Ud Tuning, 714–717
19-tone scale, theoretical; ascending and
descending spirals of “fifths,” 710–713
84 Melodic Modes, 721–726, 728–729, 768
6 Awazat, 730–731
12 genera, for the construction of, 726
12 Shudud, 727–730, 737, 740–744,
767–768
Chinese
1-lu interval
two different kinds, 497–499
of two tiao (mode tuning) cycles, 496–499
5-tone (pentatonic) scale
on ch’ in
12 tiao (mode tunings)
ascending cycle of six; descending
cycle of six, 496–499
interval sequences of, 497, 500
Scales (Continued)

open strings

post-Ming, new scale, 490–493
pre-Ming, old scale, 490–493
String III as chiao, dual identity of, 492
tuning sequence of, 492
stopped strings (hui fractions), pre-Ming, old scale, 492–496
cipher notation of, Cheve System, 490, 493, 496, 508
original, 487–488, 490–493

12-TET, discovery of, Chu Tsai-yu, 502–504
12-tone scale
formula of, Ssu-ma Ch’ien, 486
generation of, 486–487
lu, definition, 487
spirals of “fifths,” That closely approximate equal temperaments, 500–502

Greek
Archytas, three means for the construction of tetrachords, 86–87
of Aristoxenus, 309–311
Catalog of Scales, seven theorists, 330–332
Dorian and Lydian modes, 292, 301, 333
of Euclid, 304
Greater Perfect System (GPS), 289–292, 301–304, 333
Lesser Perfect System (LPS), 289–291
of Philolaus, 300–301, 304
of Ptolemy, 328–329
of Pythagoras, 289, 293
seven harmoniai (modes), 290, 292
ecclesiastical names of, 290, 292
of Terpander, 289, 291–293
three genera, Archytas and Aristoxenus, 289–292

Indian
ancient
Bharata
Madhyamagrama (Ma-grama), 540–541, 546
and svarasadharana, 549–551
Sadjagrama (Sa-grama), 540–541, 546
Suddha Jatis, 554
Arsabhi and Naisadi vs. Ptolemy’s Tense Diatonic, 553
Vikrta Jatis, 555
Gandhari vs. original Chinese pentatonic scale, 556
gramaragas and laksana
of Kudimiyamalai inscription, 563
of Matanga, 563
of Narada, 563
of Sarngadeva, 563

North India
12-tone scale, modern svaras of, 592
Bhatkhande, 10 most popular Thats, 581, 596
letter-dot notation, after cipher-dot notation of the Cheve System, 508, 535n.6, 598–599
Narayana and Ahobala, 12-tone vina tuning, 591
Roy, 32 Thats, of eight-by-four matrix system, 581, 595–596
sitar tuning and fret locations, 598

South India
14 most popular mela ragas, 581
Govinda
72 musical heptatonic scales, first formal implementation of, 565
Kanakangi-Ratnangi system, 580–581
Ramamatya
12-tone practical scale, suddha mela vina tuning, 573
14-tone theoretical scale, 567
Venkatamakhii
12-tone scale, 577
72 Melakartas, of twelve-by-six matrix system, 579, 581

Indonesian. See also Gamelan

Bali
gamelan Semar Pegulingan, 525–530
patutan, definition, 523, 537n.43
pelog
7-tone scale (saih pitu), 523–530
5-tone scale (saih lima), derived, 524–530
pemero (two auxiliary tones), penyonorog and pemanis, 525
cipher notation of, 523
intervals of, 523
patutan Selisir, 525–530
six-tone, Pliatan Village, 530–534
cipher notation of, 532
penyorog, 525, 531–534
Patutan Tembung, Selisir, Baro, Lebeng, 525–529
and Sunaren, 527–529
slendro, 5-tone scale
cipher notation of, 522–523
intervals of, 523
saih gender wayang; shadow puppet theater only, 522–523
solmization, slendro and pelog, 525

Java
patet, definition, 512–513
pelog, 7-tone scale
5-, 7-, and 11-limit ratio analyses of, 511
cipher notation of, 510–511
definition, 510
intervals of, 510–512, 517–521
Patet Lima, Nem, and Barang, 517–521
gong tones and cadences, 517, 519–521, 537n.29

slendro, 5-tone scale
5-, 7-, and 11-limit ratio analyses of, 510
cipher and cipher-dot notation of, Cheve System, 508–511, 535n.6
definition, 509
intervals of, 509–517

Patet Nem, Sanga, and Manyura,
513–514, 516
13 Basic Maqamat, 740–743
10 of 13 on Sali Al-Din’s First Ud, 740–743

Sindoesawarno, Ki, 512
Sitar. See Indian musical terms, North India

Shankar, Ravi, 597, 600
Sharma, P.L., 561
Shear force. See Bars, rods, and tubes, restoring forces

Shirlaw, Matthew, 428, 434, 448, 452
Signell, Karl L., 736, 738–739, 741–745
Simple Flutes, 833

Acrylic Flute
Flute 1
construction of, 246
dimensions, 241
tuning of, 239–241, 833

Flute 3, tuning of, 833
Amaranth Flute, Flute 2
dimensions, 243
tuning of, 245–246
Plate 11, 855

Simple harmonic motion (SHM)
definition, 50, 182
of particle motion
in air, 182–184
in cord/string, 50–51
in solid, liquid, gas, 186–187
of spring-mass system, 183–186

Sindoesawarno, Ki, 512

Smith, Page, Dedication Page, 839

Snyder, Jane McIntosh, 618

Sound waves. See Waves, sound

Soundboards. See Wind instruments

instrument
Bass Canon, 800, 805
ch’in, top piece, 489
Chrysalis, 788–789
Harmonic/Melodic Canon, 790–793
Soundboards (Continued)

harp-vina, 543
harpsichord, 123, 125–126, 129, 132–133
Just Keys, 808–809
kithara and lyre, 617–618
Little Canon, 834–836
piano, 123, 125–126, 129, 132–133
qanun, ancient, 628–631
sitar, 597
trumpet marine, 408
ud, top plate, 619–620, 626
vina, 586
violin, top plate, 626
piano. See also Pianos, soundboard
bending wave, 122, 128
speed, 119, 131
and bending wavelength, inverse proportionality, 131–132
and critical frequency, 132, 134
and dispersion, 130–132
effect on acoustic radiation, 123–124, 131–133
experiment, 131
of plate, 131–132
dispersion
definition, 131
effect on radiation, 130, 132
energy transfer (coupling)
soundboard-to-air, 127–128
string-to-soundboard, 119, 121, 127–128
impedance, mechanical wave, 120–121, 124
data, Wogram, 122–124, 129–130, 132–133
experiment, thick soundboard
and thick piano string, 133–134
and thin canon string, 142
fluctuations, 122
of plate, 123
radiation, of air at soundboard, 124, 129–130
ratio
air-to-soundboard, 129–130, 134
soundboard-to-string, 125–126, 134–135, 142
reactance and resistance, 122–123
resonance and resonant frequency, 122–124, 132–133
radiation, 119
bending wave speed effect on, 131–132
critical frequency effect on, 132–133
data, Wogram, 124, 129–130
stringing effect on, 125, 130
thickness effect on, 130, 134
wood
European spruce (Picea abies), 886n.8
Sitka spruce (Picea sitchensis), 885
T’ung wood (Paulownia imperialis), 489
Spechtshart, Hugo, 334
Speed of sound. See also Wave speed, longitudinal
in air, 23, 126–127, 131–132
at 68°F, 189
at 86°F, 189
per degree rise of, 189
as constant, 188, 208
inside played flute, 229
in rosewood, 21
in spruce vs. steel, 886n.8
temperature effect on, gas, 188–189
Spring constant
acoustical, of cavity resonator, two different kinds, 212–219, 221
definition, 183–185
mechanical, 183–185, 216, 218, 221–222
Spring-mass system
acoustical, of cavity resonator
definition, two different kinds, 212–213, 217–219, 221
elastic and inertial components, 212–213, 217–219, 221
excess pressure of, 226n.50
frequency of, 215–217
restoring force of, 226n.50
mechanical
definition, 183–185
elastic and inertial components, 183–185
frequency of, 185, 223n.9
two springs in series and one mass, 218–219
restoring force of, 226n.50
Su-ss-ma Ch’ien, 93, 334, 486
Stapulensis, Jacobus Faber (Jacques Le Febvre), 396
Stifel, Michael, 276n.6, 378, 386–390, 392, 396–397, 401, 403, 427, 429, 432–433, 435
String Winder. See also Wound strings
construction of, basic components, 805–807
dimensions, 807
Plates 4 and 5, 848–849
Strings. See Flexible strings; Inharmonic strings;
Plain strings; Wound strings
Subharmonic series. See Flutes; Just Intonation,
Rameau
Sumarsam, 512
Superposition. See Flexible strings
Surjodiningrat, Wasisto, 509–511, 516, 521–522
T
Temperaments. See Equal temperaments;
Meantone temperaments; Well-temperaments
Temperature
cconversion factors, 189, 881
effect on
density vs. pressure, 188
frequency, 189
speed of sound in gas/air, 188–189, 225n.26
per degree rise of, in air, 189
inside played flute, 229
Tensile strength, 32
and break strength calculation, 35
definition, 35
of spring steel, 35
of string materials, 882
gut strings, thick vs. thin, 883n.1
high-carbon spring steel music wire, 884
temper classifications; copper, brass, bronze, and steel, 883
Tension. See Plain strings
Tenzer, Michael, 533
Terpander, 289, 291–293
Tetrachords. See Arabian tetrachords; Greek tetrachords; Indian tetrachords; Persian tetrachords; Turkish tetrachords
Theon of Smyrna, 284, 286, 318, 380
Tension Diamond. See Diamond Marimba; Just intonation, Meyer; Just intonation, Partch
Tone notation, ix
Toth, Andrew F., 524
Touma, Habib H., 760
Trumpet marines
description, 408
flageolet tones of, 408–409
Mersemne
harmonics of, 406
illustration of two, 411
as monochord, 410
length ratios of “old” and “new” trumpet marines, 410–415
Roberts, flageolet tones of, 421–422
Sauveur, rejection of, 422
Trumpets
harmonics of, first fourteen, 412
Mersemne, 404–405, 414–416
harmonics of, 406, 413
“leaps” of natural trumpet vs. harmonics of monochord, five identical ratios, 406–407
with prime numbers greater than 5, not acknowledged, 408, 412, 415
Roberts, harmonics of, infinite series, 421
Sauveur, harmonics of, first thirty-two, 424
Tubes
instrument. See Bars, rods, and tubes resonator. See Resonators, tube
Tunbur. See also Lutes
bridge and string holder (hitch pin), two separate components, 626–628, 696
of Khurasan, Al-Farabi
frets of, fixed and moveable, 701–704
strings and frets of, 696
schisma and comma variants of, 696–707
of Turkey, modern tuning and musical symbols of, 733–736
Turkish musical terms
6 hierarchical functions of tones: karar, tiz durak, yeden, guclu, asma karar, giris, 738
Turkish scales. See Scales, Turkish
Turkish tetrachords, modern
of Rast, 727, 746–747, 749
modal origins on Safi Al-Din First Ud, 726–728, 730–733, 744–748
Signell
6 basic tetrachords/pentachords, 738–739
6 ‘variant’ (non-“basic”) tetrachords/pentachords, 738–739
Tyagaraja, 578, 583–584, 604n.73, 606n.97
U
Ud. See also Lutes
bridge
dama, 628
faras, 626–628
hamila, 626–628, 631–632
hamila of canon functions as dastan of ud; vice versa, 628, 632, 670–672
musht, 626–628
construction and tuning of, earliest, 620–622, 775n.27
fret (Pers. dastan), 628, 630–632
Al-Farabi, frets of ud function as bridges of canon, 632
binsir (ring finger), 615, 617ff.
khinsir (little finger), 615, 620–622ff.
middle finger of Zalsal
Al-Farabi’s uds, 634–640, 643–645, 650–653
Ibn Sina’s ud, 667–673, 681–683
Safi Al-Din’s First and Second Ud Tunings, 709–712, 714–716
mujannab (neighbor; also anterior or assistant), 615, 620, 634ff.
Persian (ancient) middle finger
Ibn Sina’s ud, 667–672
Safi Al-Din’s First Ud Tuning, 709–713
Persian middle finger
Al-Farabi’s uds, 634–639, 642–645
Safi Al-Din’s Second Ud Tuning, 714–717
sabbaba (index finger), 615, 617ff.
wusta (middle finger), 615, 617ff.
zaid (surplus), 709ff.
of Persia, ud al-farisi, precursor of classic Arabian al-ud, 619, 775n.27
Pythagorean diatonic scale, playable on all ancient uds, 755
string
Bamm, String 1, 612ff.
Ud (Continued)

Hadd, String V
Al-Farabi's ud, 641ff.
Ibn Sina's ud, 669ff.
Safi Al-Din uds, 708ff.
Mathlath, String II, 612ff.
Mathna, String III, 612ff.
mutlaq (free; open string), 615, 617ff.
tuning of, 612–613, 621–622, 633–634,
641–642, 644–647, 667–668, 681–683,
702, 708–709

Zir
1st string, only on Ikhwan al-Safa’s ud, 621
String IV, 633ff.
‘Zir 2’, String V, only on Al-Kindi’s ud, 612ff.

V
Vaziri, A.N., 640, 691, 772
Velocity
definition, 4
dimensional analysis, 4, 20, 22
equations, 5, 7
particle, 2–3
of bar, 156–158
of complex impedance
mechanical (wave), 120–121
specific acoustic (wave), 127
of cord, 2–3, 50–51
of plane wave, 186–187
of solid and fluid, 119–120
of sound wave, in air, 183–184
phase
of solid and fluid, 119–120
of string, 131
volume, complex acoustic (wave) impedance, 197
Venkatamakhi, 565–566, 574–584, 586, 594–596
Muddu, 577

Vina
ancient
alapini vina, 543, 568–569
Bharata, 540
vina (harp-vina), 543–544
tuning experiment on, 541, 544
kinnari vina, 569, 586
zither-vina, development of, 568–569
North India
bin, modern stick-zither, 543
Narayana and Ahobala, 587
12-tone vina tuning, 591
tuning instructions, 587, 590
vicitra vina, 585, 599
South India
Ramamatya, 565
suddha mela vina, 569
12-tone tuning, 570, 573
tuning instructions, 569–570
vina, modern lute, 543, 586

W
Wallis, John, 420–421, 426
Wave speed
bending
in bar, 149–150, 159–160
and bending wavelength, inversely
proportionality, 149
and dispersion, 147–149
effect on inharmonic mode frequencies,
148–151
experiment, 149
tuning effect on, 160
in soundboard (infinite plate), 131–132
and bending wavelength, inverse
proportionality, 131
and critical frequency, 131–132, 134
and dispersion, 131–132
driving pressure of, 128
effect on acoustic radiation, 124, 131–133
experiment, 131
phase velocity of, 119
stiffness effect on, 131–132

longitudinal
in fluid (liquid or gas), 3–4, 21, 188
in gases, 892
in liquids, 890
and mica mass unit; to simplify all
calculations of, 21
in solid, 3–4, 21, 188, 888

transverse
in solid, 3–4
in string
flexible, 3–4, 60–61, 102–104
as constant, 60–61, 103–104
stiff, 99, 104–107
and dispersion, 104
as variable, 105–107

Wave train. See Flexible strings
Wavelength. See also Dispersion
bending
of bar, 149–150
experiment, 149
of soundboard, experiment, 131
definition, 54, 60
dimensional analysis, 54–55
of flute tube, half-wavelength
approximate, 229, 231ff.
exact, substitution tube, 229–232
and frequency
as function of, 80
inverse proportionality, 61–62
of longitudinal traveling wave, in air, 183–184
of string
flexible, 60–62, 71
as constant, 61–62
of transverse standing wave, 51–53, 58
stiff, 99, 101–102
 of transverse standing wave, 102
 as variable, 101–102, 116n.6
of transverse traveling wave, wave train, 50–51,
 54–57
of tube resonator
 closed-closed, theoretical and actual, 230
 closed (quarter-wavelength)
 actual, 210
 measured vs. effective, 207–209
 theoretical, 207
 open (half-wavelength)
 actual, 209
 measured vs. effective, 229–230
 theoretical, 206

Waves
 bending
 in bar, 147–151
 in soundboard, 119, 122, 124, 131ff.
 definition, 44
 pulse
 longitudinal, in tube resonator
 at closed end, compression and rarefaction,
 192–193
 at open end, compression and rarefaction,
 194–195
 transverse, in string
 crest and trough, 44–45
 collision of, 46–49
 incident and reflected, 45–46
 sound
 beating phenomenon, 135–137
 as longitudinal traveling wave, 21, 130,
 182–184, 186–188
 speed of
 in air, 23, 128, 131, 188, 203
 and critical frequency, 131–133
 in solid, liquid, gas, 119, 188
 temperature effect on, in gases, 188–189
 standing
 displacement, in tube resonator
 closed, 203, 205–208
 closed-closed, 230, 248n.10
 infinite, 200–203
 open, 203–204
 frequency of, 55, 58–59
 longitudinal
 definition, pressure/displacement, 200
 in flute, 231, 234, 245
 in tube resonator
 close, 196, 205, 208
 closed-closed, 230
 infinite, 200–203
 open, 204, 230
 period of, 54–56
 pressure, in tube resonator
 closed, 203, 205–208
 infinite, 200–203
 open, 203–204, 206, 230
 transverse
 in bar (clamped-free), 175
 in bar (free-free), 153
 definition, 48, 51–53
 in soundboard, 122
 in string
 discovery of, Sauveur, 424–426
 and flageolet tones, 408–409
 mathematical model of, D’Alembert, 423
 stiff, 101–102
 traveling
 frequency of, 55
 longitudinal
 in air, 182–184
 definition, 183
 in fluid, 119
 in solid, liquid, or gas, 186–188
 in tube resonator, 189–191, 196–197
 closed, 203–207
 infinite, 200–203
 open, 203–206
 period of, 54–56
 transverse
 definition, 50–51, 182–183
 in solid, 119
 in string, 2, 44–53, 58, 80
Weight. See also Weight density
 definition, 6
 equations, 6, 8, 16, 18
 of mica, 14
 of object, standard weight, 11–12
 of rosewood test bar, 173
 of slug, 11
 as string tension, experiment
 flexible, 18–19, 336–337
 stiff, 108
 as “weight ratio”
 Nicomachus, description of, 82–86, 93, 294
 Ptolemy, rejection of, 319
Weight density
 of bar making materials, 885
 definition, 16
 English Engineering System, inconsistent
 system, 16
 of gases, 892
 of liquids, 890
 of rosewood test bar, 173
 of solids, 888
 of string making materials, 882
Weight per unit volume. See Weight density
Well-temperaments

based on irrational length ratios; geometric divisions of canon strings, 336–337

Euclid’s method, mean proportional, 297–298

interpretation of Chuquet, 339–341

Zarlino, 338–339

Werckmeister’s No. III Well-Temperament, 349–350, 352

\(\frac{1}{4} \) ditonic comma
calculation of, 350
cumulative reduction of four non-consecutive “fifths,” 350–351

Bach’s Well-Tempered Clavier tuning, Barnes, 349
ditonic comma (comma of Pythagoras),
definition, 335, 349–350

harmonic analysis of, twenty-four usable keys, 351–353

“key color” of, unequal temperament with four different “semitones,” 352
tuning

lattice, 350–351

sequence, 471n.140

diavhook Meantone

Werckmeister, Andreas, 350–353

Western scales. See Scales, Western

Whitman, Walt, v, 788, 794–799, 802–804, 840

Widdess, Richard, 558–559, 560–562

Wienpahl, Robert W., 397

Wilson, Erv, 455–457, 887n.12

Winnington-Ingram, R.P., 308

Wogram, Klaus, 122–124, 129, 132

Wound strings

Bass Canon, 39–40, 800, 805
break strength of, 40

coefficient of inharmonicity, 114–115

experiment, 61–62

inharmonicity, difficulties analyzing, 113

length, 36

making with String Winder, 805–807

mass per unit length, 36–37

composite, 36–38

of custom string, three different materials, 39–40

of piano string, two different materials, 40–41

of cylinder

hollow, 38

solid, 38

of stiffness parameter, 113–114

mode frequency, 27–28

stiffness parameter, 34, 113–114

tension, 36, 41

of custom string, three different materials, 39–40

of piano string, two different materials, 40–41

tuning process, piano, 113

wrap wire, modified density

of bronze, 37

of copper, 40

Wright, Owen, 622–625

Y

Young

Robert W., 99

Thomas, 181n.38(B)

Young’s modulus of elasticity

of bar making materials, 885
definition, 21

elastic property, 4

of hardwood plywood, 221–222

heat effect on, 164, 177

of solids, 888

of spruce, 123, 885

grain direction factor, 123

of steel, Thomas Young, 181n.38(B)

of string making materials, 882

vibration test for, 180n.38(A)

rosewood bar, 172–173

water effect on, 172

Z

Zalzal, Mansur, 636, 716, 755

Al-Farabi’s ‘Mode of Zalzal’, 645

Zarlino, Gioseffo, 93, 319, 333, 338–340, 342–343,

349, 377–379, 381–382, 384–387, 389–401, 403,

446, 452, 553, 832

Ziryab, 614