
 

 

THE DEVELOPMENT OF THE EQUAL TEMPERAMENT SCALE 

EVOLUTION OR RADICAL CHANGE? 

A THESIS SUBMITTED TO 

THE FACULTY OF WESTERN CONNECTICUT STATE UNIVERSITY  

 IN CANDIDACY FOR THE DEGREE OF  

MASTER OF ARTS 

MATHEMATICS  

BY 

MATTHEW T. GRENFELL  

DANBURY, CONNECTICUT 

SEPTEMBER 2005 
 



The Development of the Equal Temperament Scale 

ii 

ABSTRACT 
 

This thesis examines the developments that preceded the acceptance of the equal 

temperament scale as a standard tuning for fixed pitch instruments.  The question to be 

answered is whether the change to equal temperament scale was part of a natural 

progression over time, or a discovery that made radical changes to the accepted tuning of 

the day.  The first section of the thesis explains and gives examples of the connections 

between mathematics and pitch.   Next, the history of tuning from prehistoric times to 

eighteenth century Europe is outlined.  The final sections explain and interpret the 

analysis done for this study.   

Specifically answering the question for this thesis, equal temperament was a 

radical change in tuning.  The analysis also showed that every tuning could be described 

as a radical change from its predecessor because no trends were evident.  Regardless, 

favoring a tonality system in the eighteenth century and keeping it as a standard for over 

two hundred years is a radical change, considering the amount of variability throughout 

the previous three centuries.  

This study only provides evidence that the transition to equal temperament was 

not a natural one, but was driven by necessity.  Future studies are needed by 

mathematicians and musicologists to assess the impact of equal temperament on the 

human interpretation of intervals and harmony.  Having been conditioned to equal 

temperament for two centuries, it is questionable if a change to our current tuning method 

for fixed pitch instruments is desired.
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CHAPTER 1 

INTRODUCTION 
 

 
A debate exists in the music community about the current method in which fixed 

pitched instruments such as pianos are tuned.  This debate dates back to the mid 

seventeenth century when equal temperament tuning was first invented.  Some in the 

music community believe the equal tempered scale has lessened the effectiveness of 

harmony and that harmony has been compromised by the invention.  Even the first 

Western European to publish it, Marin Mersenne (b. 1588), developed other tunings 

besides equal temperament. 

On the other side of the debate, many have pointed out the great benefits of equal 

tempered tuning.  Composers now write music that would have been impossible to enjoy 

without the tempered scale.  Instruments have also advanced with more mechanical 

assistance available for wind and string performers.  Most importantly, our society has 

(unknowingly) accepted the equal tempered scale as the norm.  Switching back to any of 

the historic systems of tuning would be quite noticeable to most of the public and would 

force musicians and composers to alter their techniques. 

This thesis does not argue for either side of the debate.  Instead, it examines the 

developments that preceded the acceptance of the equal tempered scale as a standard 

tuning for western music.  The question to be answered is not if the tuning is good or bad; 

the question is whether the Equal Temperament Scale is part of a natural progression over 
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time, or a discovery that made radical changes to the accepted tuning of the day.  

Although this will not resolve any arguments, it may shed light on reasons for the 

debate’s existence.   

The first section of the thesis explains and gives examples of the connections 

between mathematics and pitch.   The formulas and units of measure are also laid out to 

help explain the debate.  The second section outlines the history from ancient China, 

when it is believed people first explored the relationship between harmony and 

mathematics, to eighteenth century Europe, when the equal temperament scale was first 

applied to Western music.  The most popular tuning methods throughout this time period 

are described in detail.  These methods are chosen for analysis in the third section.  

The third section explains the research completed for this study.  Data 

organization, methods of analysis, and results are outlined both in this section and in the 

attached charts, graphs, and tables.   Important trends, correlations, and anomalies are 

explored.  In addition to the visual aids, I have also assembled musical excerpts so the 

reader may hear tuning methods as they are explained and analyzed.  Links to these 

excerpts are available at http://thesis.grenfellmusic.net. 

In the last section, the research and analysis are used to answer the question posed 

by this thesis.  This question is an important one because the equal temperament scale has 

changed our lives.  A person, who has heard nothing but equal temperament, listening to 

the older tuning methods is similar to a modern English speaking person listening to 

“old” English.  Although there is some familiarity, the words and phrases sound foreign.  

The older tunings also sound familiar to a modern listener, but sound out of tune because 
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the relationships between pitches are not exactly the same as those contained in the music 

we have been exposed to since childhood.   

It would be remarkable to discover that the modern English language came to be 

without a progression of small changes over time; evidence to the contrary can be found 

in literature published throughout the centuries.  It would also be remarkable if the 

underlying structure of music underwent a sudden change as opposed to an evolutionary 

process.  The first sections of this paper describe a conflict between the goals of those 

who tried to “perfect” the musical scale and the reality of nature and sound.  This conflict 

could have been the impetus for sudden change.  Sudden change could be the cause for 

debate. 
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CHAPTER 2 

WHAT IS PITCH? 
 
 

Those presenting the mathematics/music connection often use rhythm to make 

their case.  This makes sense because one is introduced to number values for note 

durations when receiving musical training.  Pitch is another example of mathematics in 

music that is less commonly discussed.  Pitch is taught completely by rote.  The theory 

behind what makes one pitch match another is not discussed, because knowing the 

mathematics will not cause one to suddenly sing in tune.  Although impractical as a 

teaching device, the application of pitch in music is purely mathematical. 

Sounds are actually disturbances in air pressure caused by a vibration.  These 

disturbances are longitudinal waves as opposed to transversal waves.  The ripples created 

by a pebble dropped in calm water are transversal waves because the motion of each 

particle is perpendicular to the travel of the wave.  Sound waves are longitudinal because 

the air molecules are repeatedly moving away and then back towards the sound source.  

Therefore, the particles are moving parallel to the direction of the wave.  Another 

distinction between sound waves and ripples in a pond is that the areas of compression in 

the air can be pictured as a series of spheres (three-dimensional) growing from the sound 

source as opposed to circles (two-dimensional) from the pebble in water.  Although 

distinct differences exist between sound and the pebble analogy often used to describe it, 

sound waves are often analyzed using two-dimensional drawings more akin to transversal 
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waves.  This is acceptable because it is much easier to visualize and the sound sources 

themselves (such as a vibrating string) fall under the category of transversal waves.i 

Most sounds encountered in every day life have waves with irregular frequencies.  

Producing a sound wave with a regular frequency creates a single pitch in music.  The 

frequency is measured in Hertz (Hz), which is the number of cycles per second.  For 

example, the pitch A above middle C on a piano is usually tuned to a frequency of 440 

Hz.  Graphing the wave produced by a pitch results in a sine wave if all harmonics are 

absent (harmonics will be discussed in the next section).  The vertical axis of this graph 

represents the level of compression in the air and the horizontal axis represents time.ii  

This graph is identical in shape to a graph representing the physical motion of the sound 

source.  For this interpretation, the vertical axis represents the distance (positive or 

negative) a point on the object is displaced throughout the object’s vibration, with zero 

representing where this point would be if the object were at rest.  Studying the behavior 

of a string is a good way to understand why the graph of a pitch forms a sine wave.  

The center point of a vibrating string is affected by a force proportional to the 

distance it has traveled from its resting point.  This can be represented by the equation: 

 kyF −=   

F is the force due to string tension, y is the distance from a resting point, and k is a 

constant of proportionality.  Knowing that force equals mass, m, times acceleration, a, 

and acceleration is the second derivative of the displacement, y, the following equation 

can also describe this force: 

''mymaF ==  
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By substitution these equations arise: 
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Since this is a study of pitch, this representation of a musical sound does not include 

harmonics, which will be discussed in the next chapter.  The functions that satisfy the 

conditions for y in the second order differential equation above are in the form: 

 ( ) ( )tBtAy
m
k

m
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A and B are constants that depend on initial conditions of the vibration.  Using 

trigonometric identities and substitution, the function can be rewritten in the form: 

( )φ+= tcy
m
ksin

  ( )
B
A

BAc

1

22

tan
:with

−−=

+=

φ
 

With the function in this form, it is obvious that the wave produced by a string behaves 

exactly the same as a sine wave.iii  It can further be concluded that a sound wave of a 

fixed pitch also behaves as a sine wave. 

 The above equation can be manipulated to produce a sine wave that matches a 

specific frequency.  If A above middle C is the desired pitch, the frequency should be 440 

Hz.  The period of a sine wave is π2 , so the desired frequency can be made by setting 

m
k

  
equal to

 
π2*440 , producing the equation ( )φπ += tcy 880sin .iv  Amplitude 

(volume of the string) is represented by c and phase (shifting of the wave from left to 

right) is represented by φ .  It can be seen that solving for π880=
m
k  for any given k or 
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m (i.e. tension or mass) will reveal many possible ratios of these two conditions needed to 

produce the pitch A 440 Hz with a string. 

For the purposes of this thesis, amplitude and phase will be ignored.  Although 

they can have an effect on the perception of tuning (e.g. if one note is louder than 

another, the resulting beats may be less distinguishable), the theory of tuning is not 

affected by either of these elements.  If two strings both tuned to A 440 Hz are played and 

each have different phases, 21 &φφ , and amplitudes, c1 & c2, their combined waves can be 

expressed as: 

( ) ( )2211 880sin880sin φπφπ +++= tctcy  

Using the trigonometric identities, y can be expressed the following ways: 

( ) ( )

[ ] [ ])sin()sin(()880cos()cos()cos(()880sin(
)sin()880cos()cos()880sin())sin()880cos()cos()880sin(
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Since [ ])cos()cos(( 2211 φφ cc +  and [ ])sin()sin(( 2211 φφ cc +  are both functions of 

constants, they will be set to new constants, m1 and m2 respectively.  With these new 

constants the following can be ascertained:   
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This new representation of y shows that the resulting sound has the same pitch (A 

440 Hz).  When musicians tune their instruments, they do so by listening for beats while 

comparing two sounds.  These beats are created by their pattern falling in and out of 

phase due to the two wavelengths being slightly different.  As the beats slow down and 

eventually vanish, the two wavelengths are made the same and the two instruments are 

tuned to the same pitch.  Since the above equation shows that amplitude and phase have 

no effect on the resulting pitch of two identical frequencies, a musician would hear no 

beats for this scenario because there is no discrepancy in wavelength. 

The tuning method described above only works for unisons and octaves 

(frequencies that have a ratio that is Ζ∈nn with2 ).  The next section will explore the 

natural properties of sound that influenced our choices in the relationships between 

different pitches. 
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CHAPTER 3 

WHAT ARE HARMONICS? 
 

Both mathematicians and musicians use the word “harmonic”.  Many people do 

not know the connection between the musical and mathematical meaning of this word.  

However, the concept underlying both of the definitions is identical.  From Ancient 

Greece through the Renaissance, the study of harmonics was not compartmentalized 

nearly as much as it is today.  Music and mathematics were treated as one. 

The harmonic series in mathematics is the pattern: ( ,...6
1

,5
1

,4
1

,3
1

,2
1

,1
1 ).  When an 

instrument creates a sound, this sound does not contain a single frequency.  Many 

(theoretically infinite but in practice, fifteen at most) overtones are created above the 

fundamental pitch that contribute to the instrument’s characteristic “voice” or timbre.  

Different instruments have different volume configurations for the set of overtones, but 

they are the same set of frequencies if each instrument is playing the same fundamental 

pitch.  The frequencies of the fundamental tone and all possible overtones are known as 

harmonics.  For a given frequency, m, the harmonics of a note tuned to a fundamental 

pitch m would be: (m, 2m, 3m, 4m, …). 

Once again, a vibrating string is the best way to describe what creates these 

sounds.  When a string vibrates, it does so as a whole.  However, it also vibrates as if it 

were two strings each half the original’s length, three strings of each a third the original’s 
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length, and so forth.  The pivot points for these sub-vibrations are nodes.v  The graph 

below represents a two dimensional cross-section of the first six vibrations in this series. 

WHOLE

HALF

THIRD

FOURTH

FIFTH

SIXTH

  

The sum of all these vibrations resembles the lines used to represent sounds in 

digital audio recording and editing software.  The graph below represents the sum of all 

the waves in two cycles of the previous graph. 

 

This naturally occurring pattern is the same as the harmonic series in 

mathematics.  The equation for frequency of a string in relation to its physical 

characteristics is: 
m
T

lf 2
1= , where l is length in centimeters, T is tension in dynes and m 

is density (grams per centimeter of string).vi  Since the tension and density are 

theoretically constant, frequency is inversely proportional to the sub-lengths of a string.  

This explains the pattern for harmonic frequencies outlined above. 

It should be noted that this representation of harmonics assumes a string is 

perfectly flexible, has a unison shape and density for its entire length, and has no 
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restraints at its endpoints.  Realistically, these conditions are never met; some 

imperfections are seen as positive characteristics of an instrument.  Special tuning 

techniques are required to compensate for these imperfections (such as stretching octaves 

on a piano).  These techniques are not in the scope of this paper because the tempered 

scale was developed as a mathematical solution for tuning one octave.  Due to the 

relatively small range of one octave, ignoring these imperfections has little impact on the 

study of this tuning method. 

As will be discussed in later sections, these harmonics became the foundation for 

rules of harmony and the development of the tempered scale.  To understand our current 

tuning system, one has to understand the connection between harmonics and music. 
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CHAPTER 4 

WHAT ROLE DO HARMONICS PLAY IN MUSIC? 
 

Melody is an element of music shaped by harmonics.  Melody is a series of 

pitches (frequencies) played one after another.  Each has specific length and starting point 

(i.e. the series has a specific rhythm).  Since an infinite number of frequencies exist, a 

limit must be present for the choice of pitches.  In order to communicate, the performer 

must be “speaking a language” that is familiar to the listener.  Harmonics influenced 

these choices, but they are still an infinite set.  Also, the range covered in the beginning 

of the harmonic series would be taxing on a single human voice and therefore sound 

unnatural to the listener if used as a basis for melody. 

The most important overtone in music is, not surprising, the first one.  This 

harmonic creates the interval called an octave in music.  Any two frequencies that have a 

ratio equal to Ζ∈nn with
2
1

 are called octaves of the same pitch.  This is because their 

harmonic components are so similar, they sound as one when played in unison.  Notes 

with this ratio are designated the same letter name in modern music notation.  The other 

advantage of an octave is its range, which is comfortable enough to be sung.  It is also 

wide enough to contain a variety of distinguishable pitches.  

The number of frequencies within an octave is something that is less perfect in its 

development.  We as humans have imitated the naturally occurring sounds that were 

pleasing and familiar.  Unfortunately, the harmonics series that forged these sounds do 
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not perfectly divide the octave range.  Harmonic intervals higher than an octave can be 

moved down to the first octave by multiplying them by some power of two.  Since the 

two notes will have a ratio of Ζ∈nn with
2
1

, the resulting pitch will be a different octave of 

the same note.  For example, the seventh harmonic can be multiplied by four (two to the 

power of two) resulting in the ratio of four sevenths.  Since this fraction falls between one 

and one-half, the resulting pitch is less than an octave above the fundamental frequency.  

Since the ratio between one-seventh and four sevenths is four (or 22
1
− ), the frequency is a 

lower octave of the same pitch as the harmonic.   

Repeating the process above creates a set of notes based on the natural harmonics 

within a reasonable range.  Placing the more audible harmonics in the lower octave, 

people noticed that having twelve pitches seemed to divide the octave more evenly than 

adding more or less.  In the table below, the simpler ratios that became part of our current 

chromatic scale (every pitch from one octave played from lowest to highest) are shown 

with their corresponding pitches.  Many of these pitches cannot be found in the more 

audible harmonics with ratios consisting of numbers less than ten.  The ratios (in decimal 

form) between each of these pitches are listed in the next row of the chart.  The bottom 

row shows what the final ratio would be if twelve steps were made using each ratio.  In 

this example, C is the fundamental pitch.  
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Dividing the Octave with Natural Harmonics 
Pitch C C# D D# E F F# G G# A A# B C 

Ratio  1 -- 8/9 -- 4/5 -- -- 2/3 -- -- 4/7 -- 1/2 

Ratio between 
pitches 
(decimal 
form) 

 .889  

in 2 steps 

.9 

in 2 steps 

.833 

in 3 steps 

.857 

in 3 steps 

.875 

in 2 steps 

 

If ratio is 
extended to 
12 steps 

 .494 .531 .481 .539 .449  

 

Although these more important harmonics do not perfectly fit into a scale divided 

into twelve equal parts, it can be seen why the tonal system scale evolved to contain this 

many pitches.  The extension of these ratios by twelve come very close to the desired 

ending ratio of one half (or one octave).  The mean of the extended ratios is (.499) with a 

standard deviation of (0.037).  There are cultures that use quarter-tones (notes directly 

between two chromatics) in their music.  The mean and standard variation for this scale 

(with twenty-four parts) is the same as the above example.  However, quarter-tones are 

most often used as embellishments and are difficult for most listeners to distinguish. 

While highlighting the strengths of a twelve-note chromatic scale, the calculations 

above also reveal the difficulty in tuning fixed pitched instruments.  Since the ratios 

between tones derived by harmonics are not consistent, the scale is completely dependent 

upon the starting pitch.  The most common scale in western music is called the major 

scale.  It does not use all twelve notes of the chromatic. The chart below illustrates how a 

tuning method used before and during the early Renaissance would be used to create this 

scale.  The “Just Intonation” scale is almost completely derived from the harmonics of a 

single pitch.  The first row of values shows the tuning when applied to the tonic “C.”  The 

second row shows what values would be needed to create another major scale using the 
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“D” from the first scale as its tonic.  Notes left blank were not needed to play these 

scales. 

Ratios Needed to Play in the Key of C and D 
 C C# D D# E F F# G G# A A# B C 

C major 1:1 15:16 8:9 -- 4:5 3:4 32:45 2:3 -- 3:5 -- 8:15 1:2 

D major -- 128:135 8:9 -- 64:81 -- 32:45 2:3 -- 16:27 -- 24:45 -- 

 
 

Since four of these notes are different, it is impossible to tune a fixed pitch 

instrument for both of these major keys at once.  To further illustrate this problem, the 

chart below uses decimal approximations for the ratios and adds the scales “E” through 

“B.” 

Ratios (decimal equivalents) Needed for Multiple Major Keys 
 C C# D D# E F F# G G# A A#/Bb B C 

C major 1.000 0.960 0.889 0.833 0.800 0.750 0.711 0.667 0.640 0.600 0.556 0.533 0.500 

D major  0.948 0.889  0.790  0.711 0.667  0.593  0.533  

E major  0.960  0.853 0.800  0.711  0.640 0.600  0.533  

F major 1.000  0.900  0.800 0.750  0.667  0.600 0.563  0.500 

G major 1.000  0.889  0.800  0.711 0.667  0.593  0.533 0.500 

A major  0.960 0.900  0.800  0.720  0.640 0.600  0.533  

B major  0.948  0.853 0.800  0.711  0.640  0.569 0.533  

 

Every one of these scales has some variance from the ratios needed to play “C” 

Major.  The “A#” or “Bb” has the most distinct ratios of all the pitches because it is the 

only one that is used as a sharp and a flat.  Our equal tempered scale has conditioned us 

to think of them as one pitch with two names, but they are actually two separate pitches.  
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Adding the remaining major scales would create even more problems with more sharps 

and flats sharing the same fixed pitches.   

One can guess the most commonly used keys and harmonies for a given period by 

looking at the imperfections of the prominent fixed pitch tuning methods of the time.  

Those scales with the least imperfections are likely the scales most used.  In the next 

section, the most important tuning methods leading to and including Equal Temperament 

will be put in a historical context and explained.  These are also the same tuning methods 

analyzed for this research. 
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CHAPTER 5 

EARLY MUSICAL DEVELOPMENTS 
 
 

Assumptions about the origins of music have recently been debunked by 

archeological finds and research.  Many discoveries are directly related to the major 

scale.  Those outlined in this section are examples of humans working to perfect an 

instrument’s capability of playing the major scale, and are dated well before Ancient 

Greece.  It is becoming more and more obvious that the ancient Greeks had many 

potential resources at their disposal when they made their contributions to music theory. 

The oldest discovery is from China.  In the Henan province, the remains of a 

Neolithic village were uncovered.   Many artifacts found at this site were very advanced 

for their date.  Among these artifacts, over thirty flutes made from the bone of cranes 

were between seven and nine thousand years old.  Surprisingly, six of these flutes were in 

playable condition, and researchers recorded one of them playing a Chinese folk song 

called “Little Cabbage”.vii 

Comparing the pitches of each flute to their carbon-dated age has shown evidence 

of a progression to a seven-note scale.  The earliest flutes had four or five notes from the 

modern major scale (the latter having the same pitches as a pentatonic scale).  The most 

recent flutes had either a major or mixolydian (major with a lowered seventh pitch) scale 

configuration.  One flute had a misplaced hole corrected with a smaller hole placed next 

to it.  There is also evidence of the use of a standardized pitch system by the end of this 
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period.  A strangely configured flute with the same carbon-dated age was found near the 

first site.  This flute had holes placed in a manner not suitable for fingers; multiple tuning 

configurations were placed around its perimeter.  It was most likely used as a template for 

tuning various sized flutes.viii 

It was known that melodic instruments existed during this time period, but these 

findings have changed the timeline previously theorized for the development of music.  

More evidence of the major scale being standardized before Ancient Greece was found in 

Egypt.  Although not as ancient as the Neolithic bone flute, this evidence has a direct link 

to the person thought to have “discovered” the major (also known as Pythagorean) scale.  

Since Pythagoras himself spent much time in Egypt, their society’s knowledge most 

likely aided his work.ix 

A team of researchers in Egypt recently decided to analyze the tonal structure of 

four flutes from ancient Egypt on display in museums.  Their goal was to find out if the 

Egyptian culture used a diatonic scale.  These flutes were no longer playable, but they 

were able to recreate these bamboo instruments by measuring the artifacts and analyzing 

depictions of musicians in hieroglyphics left by Egyptians from the same time period.   

Three out of the four flutes played notes from the diatonic scale; two of them 

played all seven pitches.  The oldest of these three played a pentatonic scale.  The fourth 

flute played seven distinct pitches, but these formed an Arabic scale originally thought to 

have originated in Persia at a later time (this scale contains quarter-tones described in the 

previous section).  Another interesting outcome of this study was the possible 

standardization of pitch.  The seven-note diatonic flutes’ notes have frequencies within 

one hertz of each other, even though they were dated hundreds of years apart and located 
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hundreds of kilometers away from one another.  The pentatonic flute had a different 

length and therefore a different starting pitch, but seems to be based on the same standard 

as the other diatonic flutes. x 

The researchers of this study admit that the results would be more compelling 

with the addition of more flutes for analysis.  However, the evidence is strong enough to 

know that ancient Egypt used a diatonic scale. 
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CHAPTER 6 

THE “PYTHAGOREAN” SCALE 
 

As mentioned before, Pythagoras (569-475 BC) spent time in Egypt.  This further 

complicates the traditional view that he and his followers invented the mathematical 

tuning methods bearing his name.  Records in China indicate that a similar tuning method 

was developed two thousand years before Pythagoras.  According to documents written 

about 240 BC, emperor Huang Ti (2700 BC) told a music master named Ling Lun to 

build a set of 60 bells.  Ling Lun came up with a mathematical method for creating pitch 

pipes to tune this large set of bells.  The “spiral of fifths” produced by Ling Lun’s system 

is almost identical to Pythagoras’s solution.xi   

An elaborate set of bells has been discovered in China.  Dated at 433 BC, these 

can play twelve tones and were tuned using perfect intervals. This seems to confirm a 

deeper understanding of music theory and chromatic tuning than even Chinese scholars 

had anticipated.  Unfortunately, the Chinese emperor Qin Shiuangdi (ruling 221-210 BC) 

destroyed many music documents and instruments.  Much of the evidence of China’s 

advancements in chromatic music was probably lost at this time.xii  Since then, Chinese 

music has traditionally been based on the pentatonic scale.  Even after the bells were 

discovered in 1979, the Chinese government was slow to disclose the findings that would 

contradict their view of traditional music.   
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The mathematics described in this section accurately depicts both Pythagoras’ and 

Lun’s tuning methods (discrepancies between the two will be outlined).  The system for 

this method of tuning is based on one interval.  In music, there is a “circle of fifths.”  Two 

notes five diatonic steps apart (counting the bottom note as “one”) are called a fifth.  The 

actual number of chromatic steps is always eight.  If you create another fifth from the top 

note of the previous fifth and continue this pattern, you will get the following series of 

notes: 

C, G , D, A, E, B, F#, C#, G#, D#, A# (or Bb), F, C 

 

It is called the circle of fifths because it ends where it began after the twelfth note.  

Using the string length ratio “2:3,” a perfect fifth can be tuned very easily.  By tuning 

either up a fifth or down a fourth (inverted fifth with the ratio 3:4), all twelve notes could 

theoretically be tuned in one octave.  Ling Lun described this as add and subtract one-

third.  In other words, the next length in the sequence would be: 

xx x
3
2

3 =−     with x being the length of the lower note of the interval 
   or 

xx x
3
4

3 =+     with x being the length of the higher note of the interval 

 

Both Pythagoras’ and Lun’s methods produced relatively the same results.  The 

following chart shows the string length intervals of the chromatic scale produced by these 

tunings: 

Comparison of Ling Lun’s and Pythagoras’ Tunings 
 C C# D Eb (D#) E F (E#) F# G G# A Bb (A#) B C 

Ling Lun 1:1 2048:2187 8:9 16384:19683 64:81 131072:177147 512:729 2:3 4096:6561 16:27 32768:59049 128:243 1:2 

Pythagoras 1:1 2048:2187 8:9 27:32 64:81 3:4 512:729 2:3 4096:6561 16:27 9:16 128:243 1:2 
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The differences found between these two representations are only due to the 

starting and ending points of the “circle.”  Lun’s version starts at “C” and continues to 

“E#” (not “F” since it was calculated as a fourth below “A#”) and the Pythagorean 

version starts at “C” going in two directions and ending at “Eb” and “G#.”  It must be 

noted that this comparison is difficult to present since it involves using modern terms for 

note values and comparing two theories with their own representations of pitch.  Hence, 

this comparison is very likely skewed by modern interpretations.  Regardless of any 

possible notation discrepancies, both systems are remarkably similar. 

As well as sharing many of the same ratios, both of these scales also contain the 

same flaw.  The point where the “circle” closes does not form a perfect fifth.  This is 

located between “E#” and “C” in the Chinese system and “Eb” and “G#” in the Greek 

system.  The imperfect fifth was later named a “wolf” interval and became the focus of 

future musicians and mathematicians from the Middle Ages until today.   

Evidence suggests the Chinese understood this to be a spiral of fifths and that this 

method would produce an infinite number of pitches.  They chose to use only the first 

twelve tones from this spiral.  Unlike the Greeks, they built instruments with all twelve 

notes.  The Greeks created eight note scales from the twelve tones and simply avoided the 

“wolf” interval.   These scales existed prior to the tuning method being made public; they 

were only enhanced by the Pythagorean’s work.   

The Pythagoreans believed that important intervals were based on string length 

ratios with integers one through four.  The ratios within one octave are: 1:1 (unison), 1:2 

(octave), 2:3 (fifth), and 3:4 (fourth).  Although the Pythagorean scale is built using these 
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ratios, the simplicity in harmonic intervals is lost in the final product.  As instrumental 

music became more complex, this scale did not have a sufficient number of “consonant” 

intervals (based on simple ratios).  With help from rediscovered writings of a scholar 

from Alexandria, a less systematic but more “perfect” scale was created during the 

Middle Ages in Europe. 
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CHAPTER 7 

JUST INTONATION 
 

When musicians play an instrument with a flexible pitch system (e.g. voice or 

violin), it can be argued that they perform in “just” intonation.  Pythagoras was correct in 

stating we prefer simple intervals.  It does not matter to the human brain when these 

intervals are not the same throughout all possible key signatures.  Just like a driver 

making slight adjustments to a steering wheel to keep a car between the lines, musicians 

can adjust the frequencies of a pitch when facing different contexts. 

The Pythagorean focus on fourths and fifths was shared by early European 

musicians in terms of harmony (more than one note played at once).  The more simple an 

interval, the less tension is heard when this interval is played at once.  Starting in the 

middle ages, monks in the Roman Catholic Church sang Gregorian chants during 

worship.   The melodic structure of these chants was based on ancient writings about the 

Greek tetrachords (sets of four notes paired to make an eight note scale).  To this day, 

Western musicians use the Greek words for these “modes” (scale configurations).  

However, the names do not match the original intent of the Ancient Greeks because of 

interpretative mistakes.xiii   

These Gregorian Chants are still performed today, but they also acted as a starting 

point for developments in polyphony (more than one melody played at once).  As 

hundreds of years passed, church composers began experimenting with harmonic 
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variations of the Gregorian chant.  Starting with simple one-note drones behind a more 

complex melody (organum) and eventually moving to parallel melodies with a consonant 

distance apart (discant).  By the thirteenth century, the increasing complexity of European 

sacred music was also influencing secular musicxiv. 

  Many fixed pitch instruments were shunned during the early Middle Ages 

because of their connections to “pagan” traditions of Rome.  Versions of these 

instruments slowly came back however.  Bell sets could be found throughout the middle 

ages.  Large pipe organs were built in Cathedrals starting in the tenth century.  The 

percussive dulcimer was not a new instrument, but was introduced to Western Europe 

(invented in Persia) by the fourteenth century.  The psaltery (a small, hand plucked 

predecessor to the harpsichord) was another fixed pitch instrument introduced from the 

Middle East and commonly played during the later part of the Middle Ages.xv 

The most common tuning in the first part of the Middle Ages was the 

Pythagorean.xvi  The combination of increased harmonic complexity and the popularity of 

fixed pitch instruments made this a more difficult tuning to use.  Most combinations of 

notes from the Pythagorean result in complex length ratios.  Complex length ratios 

produce a discordant sound when played together.  The only combinations of notes 

producing pleasant harmonies are all but each of the fourths and fifths.  Having human 

voices demonstrate the ideal harmonies throughout the scale probably highlighted flaws 

for listeners.  

Writings by the Alexandrian philosopher Claudius Ptolemy (85-165 CE) 

influenced the development of a new tuning system during the sixteenth century in 

Europe.  In Harmonics, Ptolemy expanded the consonant string length ratios to contain 
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whole numbers up to six.  Ptolemy’s tetrachords balanced the debate between those who 

believed scales should be based on mathematical proportions and those who thought they 

should be completely based on what is aesthetically pleasing.xvii  Although less 

symmetric than the Pythagorean tuning, his were based on simple ratios that were also 

pleasing to the ear.   

By the early Renaissance, musicians began to favor thirds and sixths as 

harmonies.  The Pythagorean explanation of consonance did not include these intervals, 

but Ptolemy’s did.  A major third (five semitones) and major sixth (ten semitones) can be 

produce by a string length ratio of (4:5) and (3:5) respectively.  Italian music theorist 

Gioseffe Zarlino (1517-1590) studied the intervals discussed by Ptolemy and found that 

the most consonant intervals were created from ratios derived from the expression: 

( nn 1+ ).xviii   Matching these types of ratios with intervals considered to be consonant 

during this time, Zarlino published a standardized system for tuning an octave with “just” 

intervals.xix  Although not the basis for its development, the diatonic notes (naturals) in 

Zarlino’s Just Intonation scale are simple harmonics found in the note “F,” and the 

accidentals (sharps and flats) are simple harmonics of various diatonic notes.  The 

following chart displays the diatonic ratios. 

Just Intonation Diatonic String Ratios 
 C D E F G A B C 

Just Intonation 
Ratios for Scale 

1:1 8:9 4:5 3:4 2:3 3:5 8:15 1:2 

Ratios between major 
and minor seconds 

8:9 9:10 15:16 8:9 9:10 8:9 15:16  

 
With this configuration, there are two types of major seconds (two semitones 

apart) and one type of minor second (one semitone apart) in the major scale.  Further 
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analysis would reveal more than one type of other intervals as well.  Adding the 

chromatic ratios highlights the unevenness of this scale. 

Just Intonation Chromatic Ratios  
 C C# D D# E F F# G G# A A# B C 

Just Intonation 
Chromatic 
Ratios 

1:1 15:16 8:9 5:6 4:5 3:4 32:45 2:3 5:8 3:5 5:9 8:15 1:2 

Ratios between 
minor seconds 

15:16 128:135 45:48 24:25 15:16  128:135   15:16 15:16 24:25 25:27  72 :75    15:16    

 
The two tuning methods discussed so far became the extremes from which 

mathematicians and music theorists either tried to find compromises or to perfect.  The 

Pythagorean was developed using a systematic and uniform method.  Searching for 

pleasing harmonies and not using any sort of algorithm was the basis for just intonation.  

These two philosophies were later brought closer together with the discovery of 

overtones. 

The Greeks wrote about the harmonic series for interval string lengths, but not for 

multiple pitches simultaneously produced on one string.  The first publication of this 

knowledge was by French mathematician Marin Mersenne (1588-1648 CE).  Although he 

could never explain the physics behind them, Mersenne was the first to identify overtones 

found in a vibrating string.xx  The set of string lengths needed to produce these overtones 

as fundamentals is the harmonic series.  A mathematically predictable property of sound 

could be used to identify consonance of intervals.  Instead of identifying consonant ratios 

by trial and error, one could compare the frequencies of each string length and find out 

how many overtones are shared.  The fewer audible frequencies in common, the more 

dissonant the interval is for two string lengths. 

While helping to identify consonance in a more scientific way, more questions 

were created by this discovery.  For example, the most consonant interval (other than an 
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octave) is a perfect fifth.  This matches music theory from ancient Greece through the 

Middle Ages, but musicians began to favor major thirds by the early Renaissance.  This 

contradiction allowed continuation of the debate between those who sought a 

mathematical answer and those who favored a more observational approach.  Also, 

knowledge of the overtone series made it clear that any tuning of a fixed pitch instrument 

would be a compromise of ideal harmony.  Before equal temperament became the 

standard for Western music, two families of compromises existed: “mean-tone” and 

“well” temperament.   



The Development of the Equal Temperament Scale 

29 

CHAPTER 8 

MEAN-TONE TEMPERAMENT 
 

 
In previous sections of this paper, tunings have been described by string length 

ratios.  By the Renaissance, frequency ratios were the common way to define tunings.  

The conversion from one to the other is simple; the reciprocal of one equals the other.  

For example, a perfect fifth has a string length ratio of (2:3) and a frequency ratio of 

(3:2).  In keeping with the writings of those who developed the following tuning 

methods, frequency ratios will be used to describe the remaining tuning systems. 

Mean-tone temperament is a modification of the Pythagorean scale.  When tuning 

using the Pythagorean method, the fourth note tuned from “C” is “E,” which should be a 

major third.  As mentioned before, music during the Renaissance favored major thirds 

over perfect fifths as harmonies.  The aim of mean-tone temperament was to “purify” the 

major third.  The Pythagorean “E” had a frequency ratio of (81:64).  The “just” ratio for 

“E” is (5:4).  The difference between these ratios became known as the syntonic comma 

(also known as the Ptolemaic comma) with a ratio of (81:80).  This comma is large 

enough to be audible to most listeners. 

If perfect fifths are tuned flatter or sharper than (3:2), other intervals in the 

Pythagorean method can be made closer to “just” intervals.  If fifths are tuned one-fourth 

of a syntonic comma flat: 















≈=






÷ 495348781.1

2
80

80
81

2
3 4

1

4
1

, the note “E” will have a ratio of 
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(5:4).  This creates a new scale that weakens fifths to strengthen a major third.  The 

following is a chart of the approximate decimal values of a scale tuned this way 

compared to “just” intonation. 

Quarter Comma Meantone Temperament vs. Just Intonation 
 C Db D Eb E F F# G G# A A# B C 

Meantone 1.0000 1.0700 1.1180 1.1962 1.2500 1.3375 1.3975 1.4953 1.5625 1.6719 1.7469 1.8692 2.0000 

Just 1.0000 1.0417 1.1250 1.2000 1.2500 1.3333 1.4063 1.5000 1.5625 1.6667 1.8000 1.8750 2.0000 

Difference 0.0000 -0.0283 0.0070 0.0037 0.0000 -0.0041 0.0087 0.0047 0.0000 -0.0052 0.0531 0.0058 0.0000 

The name “mean-tone” comes from the major second (D) being the geometric 

mean of the root and the major third (C and E).xxi  This method does not resolve the 

problem of having two ratios per chromatic.   Identifying which combination divides the 

octave most evenly is the deciding factor for which sharp and flat ratios are use for 

chromatics.  In the above chart, the note names identify which combination was chosen 

for this version.  The combination also makes the “wolf” interval spread out between 

multiple pairs of notes.  This first documented mean-tone tuning was known as “Quarter 

Comma Mean-tone Temperament” and was first published by Italian music theorist 

Pietro Aaron (1490 – 1545 CE) in the early fifteen hundreds.xxii   

Musicians using this scale would not stray too far from the key of “C” (i.e. keys 

with too many flats or sharps) because of the more arbitrary way accidentals were tuned.  

Mathematical theory is not the sole basis of mean-tone temperament.  Compromising the 

ratio of a perfect fifth in order to make a “just” third is a decision guided by aesthetics.  

This decision overcorrected the fifth causing problems with harmonies other than major 

thirds.  Many other mean-tone temperaments were developed with different divisions of 

the syntonic comma.  These will be included for analysis in this research.
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CHAPTER 9 

WELL TEMPERAMENT 
 
 

The most common well temperament tuning was published by Andreas 

Werckmeister (1645 – 1706 CE) and referred to as “Werckmeister III”.  As the name 

implies, Werckmeister created multiple versions of the well-tempered scale.  His first two 

tunings were actually versions of Just Intonation.xxiii  At the same time these scales were 

being published, composers were experimenting with modulations between keys 

signatures.  Contrary to popular belief, J.S. Bach’s Well Tempered Clavier was not 

written because the scale allowed for even sounding key signatures (equal temperament is 

needed for this); Bach’s work actually highlighted unique characteristics for each key 

signature when fixed pitch instruments were tuned using well temperament.  However, it 

is unknown which version Bach used. 

Like mean-tone temperament, portions of a comma are used to alter fifths in 

Well-Tempered scales.  However, the Pythagorean comma replaces the Syntonic.  This 

comma is calculated by dividing the ratio of twelve consecutive perfect fifths by the ratio 

of seven consecutive octaves 





 ≈=÷ 013643265.1

524288
531441

1
128

4096
531441 .  The ratio not being 

(1:1) is the reason for the “Wolf” fifth in the Pythagorean tuning.  Another difference 

with Werckmeister’s tuning is the seemingly arbitrary nature in which the comma is 

distributed between the fifths.  C:G, G:D, D:A, and B:F# are all one-fourth of a comma 
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flat with the remaining fifths tuned perfectly.xxiv  The chart below shows the frequency 

ratios in decimal form. 

Werckmeister III Well-Temperament 
 C C# D D# E F F# G G# A A# B C 

Frequency 
ratios 

1.0000 1.0535 1.1174 1.1852 1.2528 1.3333 1.4047 1.4949 1.5802 1.6704 1.7778 1.8792 2.0000 

Ratios 
between 

chromatics 

1.0535 1.0607 1.0607 1.0571 1.0643 1.0535 1.0643 1.0571 1.0571 1.0643 1.0571 1.0643  

 

An advantage to this tuning is having one value for each chromatic.  The spiral of 

fifths becomes a circle since four of the fifths tuned are lowered by one-fourth of a 

comma.  All of the well-tempered scales share this quality.  The disadvantage is the 

unevenness of semitones.  The consonance of commonly used intervals is compromised 

for certain keys more than others.   

The way in which the Pythagorean comma is spread throughout the circle of fifths 

is what makes each well temperament unique.  Analyzing their harmonic strengths would 

most likely correlate with the commonly used harmonies and key signatures of the time 

and place of their invention.  With composers expanding the possibilities for key 

modulations and harmony, it became increasingly difficult to create a tempered scale for 

fixed pitch instruments.  The scale used today was the compromise reached to 

accommodate the developments in Western music. 
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CHAPTER 10 

EQUAL TEMPERAMENT 
 

Many mathematicians and music theorists considered the equal temperament 

scale well before the first accurate table of string lengths for it was published.  Those 

working on other temperaments saw the advantage of spreading imperfections over 

multiple fifths rather than having one interval completely out of tune, so the next logical 

step was extending this to all fifths. Galileo’s father, Vincenzo Galilei (~1525-1591 CE), 

wrote about the placement of frets on a lute in 1581.  Fretted instruments have more 

complications in temperament because the parallel strings (usually tuned a perfect fourth 

apart) have identical string length ratios throughout their ranges due to the perpendicular 

frets on the fingerboard.  Galilei proposed that the only temperament that will work with 

this setup is one that divides the octave equally.  He gave an approximation of this 

division with each semitone frequency ratio of (18:17).xxv  This ratio does not divide the 

octave equally, but it proved to be very close to the solution described below. 

Until the seventeenth century, no practical and accurate application of equal 

temperament was published in Europe.  This was not due to lack of inspiration on the part 

of those trying to develop a tuning method; the barrier was directly related to an unsolved 

mathematics problem.  The classical problem of doubling a cube is one that Greek 

mathematicians had tried to solve for centuries.  In the nineteenth century, French 

mathematician Pierre Wantzel (1814-1848 CE) proved that the geometric solution they 

were attempting was impossible using only a ruler and compass.   
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The cube root of two is more than just irrational; it cannot be constructed with a 

ruler and compass.xxvi  Spreading the error over twelve fifths of a Pythagorean tuning 

involved splitting the error into twelve equal parts.  Since these are proportional 

relationships, this meant taking the twelfth root.  Three is a factor of twelve, and the cube 

root of a Pythagorean comma is part of the calculation of values of an equal tempered 

scale.  Since the denominator of 







524288
531441  is a power of two, the cube root of two is 

crucial in calculating string ratios. 

A simpler way of illustrating this problem is to ignore the Pythagorean comma 

and create a scale based on the desired result.  All semitones should have the same 

proportion because all intervals are consistent in an equal tempered scale.  Twelve of 

these semitones will equal one octave with the frequency ratio of (2:1).  Therefore, a 

semitone must have a ratio of  ( 1:212
1

).  Already, the cube root of two is in the answer for 

this tuning.  The following shows all of the ratios and decimal values for an equal 

tempered scale. 

Equal Temperament 
 C C# D D# E F F# G G# A A# B C 

Frequency 
Ratios (all to 
one) 

1 12
1

2  6
1

2  4
1

2  3
1

2  12
5

2  2
1

2  12
7

2  3
2

2  4
3

2  6
5

2  12
11

2  2  

Approximate 
Decimal 
Values 

1.0000 1.0595 1.1225 1.1892 1.2599 1.3348 1.4142 1.4983 1.5874 1.6818 1.7818 1.8877 2.0000 

The advantage to this is clear; all keys signatures sound exactly the same.  If 

people can accept the sound of one major key in equal temperament, all major keys will 

sound satisfactory to their ears.  The same could be said for other modes, such as those 

used in Gregorian chants.  Unfortunately, this could not be tested until the values for each 
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chromatic were known.  Since the tuning contains the cube root of two, the scale had to 

wait until mathematicians were capable of accurately estimating this value. 

Dutch mathematician Simon Stevin (1548-1620) attempted to calculate the equal 

tempered scale during the 1580’s.  In his writing, he did not refer to it as temperament.  

He believed equal proportions of the octave produced the ideal scale, and all other 

tunings were misconceptions.  To make his calculations, he first established a value for 

“E” by estimating the cubed root of two.  He used this value and the properties of 

proportions to calculate values for the remaining notes.  Although he had many errors due 

to improper rounding of decimals, his table of values produces a tuning that resembles 

the equal temperament used today.xxvii 

Because Stevin’s work was never published, equal temperament was not 

experimented with until after 1636 when Marin Mersenne published various calculations 

of equal temperament in his Harmonie Universelle.  The most accurate of these 

calculations was given to Mersenne by French engineer Jean Gallé (1580-? CE).  With 

the exception of one (probably typographical) error, these calculations are 

indistinguishable from the current version.  Mersenne is often referred to as the inventor 

of equal temperament with Stevin or Gallé hardly mentioned.  Although Stevin was the 

first Western European known to tune using equal temperament, it is possible that 

Mersenne and Stevin found this method from China. 

Chinese prince Chu Tsai-Yu published an equal temperament scale in 1584.  His 

calculations were as accurate as those done by Gallé fifty years later.  It would seem 

unlikely to have influenced Europe so quickly; however, Italian Jesuit Matteo Ricci 

(1552-1610 CE) went to China to start a mission in 1583.  Although religion was part of 
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his mission, his main focus was sharing Western mathematical and scientific methods 

with Chinese scholars.  He became a well-respected figure in their country.  Trying to 

gain the respect of Chinese royalty, Ricci was most likely aware of Chu Tsai-Yu’s 

publication.  There is no evidence of Ricci sending the publication to Europe.  Whether 

or not he directly influenced Western European music, Chu Tsai-Yu is the first person 

known to have made an accurate table for tuning in equal temperament.xxviii 

Another mathematical advancement contributing to equal temperament was the 

logarithm.  Scottish mathematician John Napier (1550-1617 CE) created a calculation 

table.  His table was later updated by Henry Briggs (1561-1631 CE) to reflect changes 

planned by Napier shortly before his death.  Briggs’ update (published in 1628 CE) 

became the form of logarithms used today.xxix  Thanks to this new tool, calculations for 

frequencies could be made more accurately and quickly without the time-consuming 

extraction of roots.  Taking logarithms of frequency ratios (base two) and multiplying 

them by the number (1200) later became the standard for measuring pitch called cents.  

This measure is beneficial because it is small enough to measure important intervals such 

as the Pythagorean comma (approximately 23.46 cents), and one hundred cents represent 

a semitone in equal temperament.  Alexander Ellis (1814-1890 CE) first popularized this 

measure in his English translation of Hermann Helmholtz’s (1821-1894 CE) On the 

Senations of Tone.xxx  The following chart shows each of the values for an equal 

tempered scale, followed by the logarithm and cents for each of these values. 

Equal Temperament with Logarithms (base 2) and Cents (log *1200) 
 C C# D D# E F F# G G# A A# B C 

Frequency 
Ratio 

1 1.0595 1.1225 1.1892 1.2599 1.3348 1.4142 1.4983 1.5874 1.6818 1.7818 1.8877 2.0000 

Log of 
Ratios 
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Although this new standard of measure was obviously inspired by equal 

temperament, logarithms advanced the study of all temperament methods.  As can be 

seen by the dates for methods mentioned so far, there were overlaps due to conflicting 

opinions about which method was better.  Even Mersenne invented his own modification 

of mean tone temperament after publishing the equal tempered scale.xxxi  Equal 

temperament did not become the dominant tuning method until the end of the eighteenth 

century.xxxii  Logarithms (and later cents) became a convenient way to calculate and 

express frequency values for the many versions of mean-tone and well temperament.  The 

analysis in the next section will use cents to express the frequencies of all tuning methods 

including the Pythagorean. 

By the nineteenth century, Western European music had become so complex that 

equal temperament was the only practical method for tuning fixed pitch instruments.  

Contrary to Stevin’s view of the scale, most saw this as a necessary compromise.  Other 

temperaments favored particular key signatures.  Musical compositions were created in 

all twenty-four major and minor keys by this time.  As well as changing keys mid-piece, 

harmonic progressions often mixed chords from other key signatures with the diatonic 

chords.  Without equal temperament, fixed pitch instruments would have needed retuning 

constantly (even in the middle of a performance) to facilitate these new compositional 

techniques.  In the next section, selected common tunings leading up to this acceptance of 

equal temperament will be statistically analyzed. 
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CHAPTER 11 

DATA ANALYZED IN THIS STUDY 
 

The main question this analysis seeks to answer is: Did the acceptance of the 

equal tempered scale fit into an evolutionary development or was it a radical departure 

from previously accepted methods?  The country of origin for each tuning is included in 

the analysis because of the influence this variable might have.  However, the study does 

not seek to answer any questions regarding the origin of each tuning method; the variable 

is only used to identify or account for any disparity in the data resulting from the variety 

of locations. 

The tunings used for this research come from various sources, with the majority 

from Tuning and Temperament by J. Murray Barbour.xxxiii  Barbour used cents to analyze 

many historic temperaments.  He also included references to the initial publications of 

these methods.  Cross-referencing this data with tables found on the Internet, over ninety 

tunings with dates and countries of first publication are compiled for this research 

(Appendix A).  Equal temperament attempts were not included for this study. 

There is no method to identify what tuning methods were prevalent for any given 

time or place.  Debate is still ongoing concerning which scale Bach’s Well Tempered 

Clavier was designed for.  If records are insufficient for a piece whose title alludes to a 

family of tuning systems, one can imagine the difficulty in accurately pinpointing the 

original temperament for other pieces.  In this study, tunings are ordered and placed by 

their dates and locations of first publication.  This is not an accurate portrayal of the 
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music heard during those times, but theorists and mathematicians were probably 

influenced by the current practice and vice versa.  Rather than skewing the results by 

trying to assess which tunings were important (based on modern notions), no documented 

twelve note tuning system from Europe was purposely excluded from this data set. 

The pitch systems were first analyzed by mean and standard deviation from three 

chosen standards: Equal Temperament, Just Intonation, and Pythagorean.  These were 

chosen because they are all somewhat static and are historically significant.  Total 

deviation values for a scale were calculated by adding the absolute value of differences 

between cent values of each note and the corresponding cent values from the standard.  

This sum was then divided by eleven to obtain the mean deviation (see example below).  

Eleven was used instead of thirteen because the first and last notes never change. 

Example Calculation of Mean and Standard Deviation (using Silbermann w/ET as standard) 
 C C# D D# E F F# G G# A A# B C 

Analyzed Scale 
(Silberman) 

0 89 197 305 394 502 590 698 787 895 1003 1092 1200 

Standard (equal 
temperament) 

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 

Absolute value of 
difference 

0 11 3 5 6 2 10 2 13 5 3 8 0 

2)( xx −  with 
corresponding cent 
values as x . 

0 121 9 25 36 4 100 4 169 25 9 64 0 

Sum of Deviations 
 

68 

 
Mean of 
Deviations 
 

6.182 

 
Standard 
Deviation 
 

523.7
)1(

)( 2

≈
−

−∑
n

xx  

Standard deviations were calculated with the usual formula, replacing means with 

corresponding cents from the standard (see above).  Eleven was once again used for the 

number of samples.  Mean and standard deviations were listed and referred to in 

Barbour’s text, but he did not explain the calculations used to arrive at them.  Therefore, 

the deviation figures used for this research are not the same as those listed in Tuning and 

Temperament.
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CHAPTER 12 

METHODS AND RESULTS OF THE ANALYSIS 
 

 
The mean and standard deviation values were the primary focus of this analysis.  

If either of these values had decreased over time, this would indicate a trend towards the 

given standard.  The opposite would be true if these values had increased over time.  

Since the question to be answered relates to the existence of an evolution towards equal 

temperament, this tuning was the most important standard used.  The other two standards 

were included to see if a different type of evolution preceded the acceptance of equal 

temperament. 

Since all of the data sets contained multiple outliers, different transformations 

were experimented with.  Square root transformations worked the best for most, but the 

just intonation standard still contained multiple outliers.  Linear regressions with the 

dates of publication as a predictor did not produce convincing results.  The best of all 

these regressions is the mean deviation with equal temperament as the standard (p-value 

of .001 w/DF 1).  This regression has an R-square value of (8.5%), which is not enough 

to prove any correlation.  The R-square value improved to (33%) after adding significant 

binary categorical variables to represent the countries in which each tuning was printed 

(found by stepwise regression).  The null hypothesis for the “date” coefficient was not 

refuted for this regression (p-value of .106 w/DF of 3).  In other words, adding the 

location of publications to the prediction made the date of publications statistically 
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insignificant.  Regardless, the R-square value was still too low to prove any correlations. 

(see Appendix B for all tests and graphs mentioned in this paragraph)  

A possible problem with the analysis could be the repetition of dates.  Some 

theorists and mathematicians published multiple methods in one publication, particularly 

in the seventeen hundreds.  They often included theories that would span a wide range of 

deviations.  This becomes evident when viewing a regression plot of the equal 

temperament mean deviation versus time (Appendix B).  To eliminate this factor as a 

possible “smokescreen” hiding trends, the data table was reduced by selecting only the 

first two theories from any publication.  There was no effort to select only “important” 

tunings.  

With this data set, the residuals are more evenly spread out versus fits.  The R-

square value of the “date” regression for this modified set is (2.2%).  The R-square value 

for stepwise regression with locations added is also lower than the first (17.6%).  The null 

hypothesis is not refuted for any of the coefficients except the binary variable for 

Germany (p-value of .001 w/DF 2).  No trends in the data could be identified with any 

regression models described so far.  Curve fittings were also experimented with, but with 

similar results (Appendix C). 

Given the lack of any trends found by regression, classification methods were 

next experimented with.  Many divisions of the population were tried.  Dividing the time 

period into four groups (each about 92 years long) was the selected division as it 

produced the most significant results.   These quarters contain unequal numbers of cases, 

but the subgroup variances for equal temperament deviations (both mean and standard) 

are acceptable for an ANOVA.  The subgroup variances are too varied in size for the 
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other standards (Just and Pythagorean), and non-parametric tests such as Mood’s median 

must be run when including these variables (Appendix D). 

ANOVA’s and Mood’s median tests were preformed for each combination of 

standards and deviation by quarter.  The only two tests to show a distinction between 

quarters were both equal temperament standards.  Although the null hypothesis is refuted 

for these tests (p-value of .001 w/ DF of 92 for both tests), not all quarters are distinct 

from each other when considering the (95%) confidence intervals (the standard deviation 

test is shown below).   

 

 

The largest difference is between the second (1533-1623) and the third (1624-

1715).  The third quarter has a dramatic shift closer to equal temperament with the fourth 

quarter returning closer to the second.  Unfortunately, the data could be skewed because 

of the previously mentioned problem of multiple tunings per publication.  Running the 

same test using only the first two tunings of each publication results in the following: 

 

 

One-way ANOVA: Standard Deviation from ET versus Quarters 
 
Analysis of Variance for sqrtET_S 
Source     DF        SS        MS        F        P 
Quarters    3    16.005     5.335     5.68    0.001 
Error      89    83.662     0.940 
Total      92    99.668 
                                   Individual 95% CIs For Mean 
                                   Based on Pooled StDev 
Level       N      Mean     StDev  ------+---------+---------+---------+ 
1           8    3.4325    0.7710              (----------*-----------)  
2          15    3.5913    0.9847                    (-------*-------)  
3          27    2.4148    0.9394  (-----*-----)  
4          43    2.8249    1.0116          (----*----)  
                                   ------+---------+---------+---------+ 
Pooled StDev =   0.9696                2.40      3.00      3.60      4.20 
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With the p-value shifting from (.001) to (.379), it is obvious that the repeated 

values for dates have a significant impact on any analysis.  Removing cases from the 

repeated dates is not an appropriate answer to this problem.  It assumes an importance of 

the first two tunings of each publication and excludes numerous repeated values from 

important theorists such as Werkheimer and Neidhardt.  Therefore, tests were run on a 

new set of data containing the average of deviations from each publication (Appendix E).  

This insures that no dated publication is given more weight than others and all tunings 

from each publication are represented.  Some theorists are counted two or three times 

because of multiple publications.  However, these publications have separate dates and 

can actually help in identifying trends. 

The new data is more evenly spread than the first, but a square root 

transformation still improved the normality and brought the variances closer together in 

size.  The Just Intonation numbers contain multiple outliers for mean deviation regardless 

of transformations and the Pythagorean has one outlier for each of its graphs.  The dates 

are distributed in a more normal pattern, and are linear when presented in a series plot 

(Appendix F). 

One-way ANOVA: Standard Deviation from ET versus Quarters with Two Tunings per 
Publication 
 
Analysis of Variance for sqrtET_S 
Source     DF        SS        MS        F        P 
Quarters    3     2.209     0.736     1.05    0.379 
Error      60    42.249     0.704 
Total      63    44.457 
                                   Individual 95% CIs For Mean 
                                   Based on Pooled StDev 
Level       N      Mean     StDev  --+---------+---------+---------+---- 
1           8    3.4325    0.7710     (----------------*----------------)  
2          15    3.5913    0.9847              (------------*-----------)  
3          10    3.2660    0.8580  (--------------*--------------)  
4          31    3.1410    0.7722     (--------*-------)  
                                   --+---------+---------+---------+---- 
Pooled StDev =   0.8391            2.80      3.15      3.50      3.85 
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Once again, linear regressions were run on each of the standards.  Using the date 

as a predictor, none of the standards produced a regression with coefficients disproving 

the null hypothesis (Appendix G).  The only regression that contained significant 

coefficients was one predicting the date using a combination of the mean deviations of 

Pythagorean and Equal temperament standards.  The R-square value for this regression is 

(16.9%).  Adding the country data raises this R-square value.  The most successful 

combination is below (full output can be seen in Appendix G). 

 

Despite these stronger values, there are problems with the model.  Removing 

three samples with extreme residuals alters the regression to one with insignificant tuning 

variables. 

Given the instability of this regression, classification methods were tried with the 

averaged data set.  Both transformed equal temperament variables grouped by quarters 

The regression equation is 
Date = 1696 - 98.2 ET_MD_SR + 90.1 PTH_MD_SR - 140 Italy - 212 Spain 
           - 84.0 Germany 
 
Predictor        Coef     SE Coef          T        P 
Constant      1696.15       58.83      28.83    0.000 
ET_MD_SR       -98.17       22.35      -4.39    0.000 
PTH_MD_S        90.11       17.19       5.24    0.000 
Italy         -140.46       33.25      -4.22    0.000 
Spain         -212.47       47.65      -4.46    0.000 
Germany        -84.03       27.81      -3.02    0.004 
 
S = 75.17       R-Sq = 56.6%     R-Sq(adj) = 50.9% 

Date = 1785 - 112 ET_MD_SR + 79 ET_SD_SR - 103 Italy - 176 Spain - 
68.3 Germany 
 
Predictor        Coef     SE Coef          T        P 
Constant      1785.16       74.87      23.84    0.000 
ET_MD_SR       -112.0       228.6      -0.49    0.627 
ET_SD_SR         79.1       200.9       0.39    0.696 
Italy         -102.76       42.53      -2.42    0.021 
Spain         -175.73       61.75      -2.85    0.007 
Germany        -68.30       37.08      -1.84    0.073 
 
S = 98.48       R-Sq = 25.6%     R-Sq(adj) = 15.8% 
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passed the Levene and Bartlett tests for equal variance.  The transformed mean deviation 

of just temperament barely passed these tests with p-values just above (.05) and 

nonparametric tests will be used for this variable.  The transformed standard deviation of 

just intonation deviation was more acceptable.  Both Pythagorean data sets were closer in 

variance with the untransformed data (Appendix H). 

Based on the characteristics listed above, the appropriate tests (ANOVA or 

Mood’s median) were applied to the appropriate data (transformed or original) for each 

variable.  Every test failed to refute the null hypothesis (Appendix H).  Therefore, there is 

no distinction between any of the deviations when grouped into four quarters of the time 

period in question.  

Multivariate tests were done with both data sets mentioned in this section.  These 

were generally used to explore the data before running the tests already described.  The 

first two tests were stepwise discriminant analyses run on the data as it was originally 

entered.  All transformed deviation standards were included for these tests.  The second 

test also included the binary country of publication data.  The first test produced two 

discriminant functions with the mean deviations of the equal tempered and Pythagorean 

data.  Only (46%) of cases were correctly predicted with this function.  The second 

stepwise discriminant analysis automatically removed all variables regarding pitch 

(Appendix I).  Similar discriminant analyses were attempted on the averaged data, but all 

variables (unaltered and transformed) were eliminated from any test (Appendix J).  

Although redundant, these multivariate tests confirm the results of the other tests 

described in this section. 
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CHAPTER 13 

INTERPRETATION OF THE RESULTS 
 

 
It is harder to prove that something does not exist than to prove that it does.  This 

analysis did not find any proof of an evolution leading to equal temperament.  If one 

existed, it would likely be reflected in the writing of theorists and mathematicians.  Even 

the tests that came close to identifying a trend did so in a manner that is counterintuitive 

to what was being searched for.  For example, the regression based on averaged data 

predicted that equal temperament would occur earliest in Spain in the year 2168 CE.  

Even if this were a valid test, equal temperament becoming the standard would have been 

a radical change in the nineteenth century. 

As well as not finding any trends, dividing the tunings into groups of time failed 

to find a statistically significant difference between any two quarters.  The first and last 

quarters were not distinct even though they were separated by almost two hundred years.  

This is not to say tuning methods did not change.  A dot plot of the deviations from equal 

temperament over time shows an oscillating pattern, occasionally coming close to equal 

temperament (Appendix K). 

Many of the theorists and mathematicians mentioned in this study were familiar 

with the concept of equal temperament.  Many of them were also capable of the root 

extraction or logarithm methods for accurately finding equal tempered measurements.  

Those who favored well temperaments sometimes came close to our current tuning.  
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Time series plots featuring individual well temperament advocates (who published more 

than two tunings) show that they often approached equal temperament and then strayed 

away from it in later tunings (Appendix K).  For example, Neidhardt’s Third Circle 

Number Five came very close to equal temperament (mean deviation of .7 cents and 

standard deviation of 1.3 cents).  Twenty-six years later, Neidhardt published his Sample 

Number Two tuning, which was a drastic shift away from equal temperament (mean 

deviation of 8.0 cents with a standard deviation of 9.1 cents).  This could be due to a 

conflict between mathematical perfection and aesthetics. 

It is possible that authors presenting multiple scales per publication used most of 

them as examples to refute, while promoting one scale.  The references used for this 

research presented each of these scales as equally important, but reading and analyzing 

each of the original publications is the only verification that all scales included for 

analysis represent the true intents of each author.  Therefore, future research is needed to 

substantiate the findings of this thesis.  The standards and analysis outlined in chapters 

eleven and twelve could be reapplied to a filtered version of the data set if any of the 

included scales were in fact “straw men.”  Given the obscure nature of the publications in 

question, this could prove to be a long and arduous process.
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CHAPTER 14 

CONCLUSION 
 

Specifically answering the question for this thesis, equal temperament was a 

radical change in tuning.  However, the analysis also showed that every tuning could be 

described as a radical change from its predecessor because no trends were evident.  Equal 

temperament could be seen as an acquired taste with its adoption as a standard much later 

than its invention.  It could also be seen as a last resort, saved until music surpassed the 

limitations of all other possible methods.  Either way, favoring a tonality system in the 

eighteenth century and keeping it as a standard for over two hundred years is a radical 

change considering the amount of variability throughout the previous three centuries. 

With the knowledge that our current tuning system is mathematically based, it is 

interesting that mathematicians often invented other systems.  For example, 

mathematician Leonard Euler (1707-1783 CE) invented a tuning method in 1739 CE (103 

years after Mersenne’s Harmonie Universelle).  This method was a version of “just” 

intonation and deviated far from equal temperament (mean deviation of 15.3 cents and 

standard deviation of 19.1 cents).  Since Euler wrote extensively on the mathematical 

evaluation of consonance and “just” intonation is built from consonant intervals, it is not 

surprising he experimented with this tuning.xxxiv  He later became an advocate for equal 

temperament, stating that his theories of consonance still held true because the difference 
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between the tempered ratios and the ratios studied in his work were “almost 

imperceptible.” xxxv 

This highlights the conundrum for those who tried to perfect the tuning system for 

fixed pitch instruments.  Different types of mathematical perfection are all possible, just 

not at the same time.  Some mathematicians and musicians focused on the perfection of 

the interval and harmony itself, while others focused on expanding the possibilities for 

key signatures and modulation.  The fact that these two searches lead to very different 

answers explains the variability in tunings throughout the time period analyzed by this 

research. 

This study only provides evidence that the transition to equal temperament was 

not a natural one, but was driven by necessity.  It does not answer any questions as to the 

impact of equal temperament on our society.  Many of those currently arguing against the 

use of equal temperament look to the past for the “ideal” tuning method, but just as early 

composers wrote music within the context of historic tunings, today’s composers write 

for equal temperament.  For this reason, it is hard to imagine going back to an earlier 

method. 

Equal temperament was a compromise that took almost two hundred years for 

Western civilization to accept for fixed pitch instruments.  Now that generations of 

people have been exposed to this tonality structure, the current perceptions of consonance 

and dissonance might have been altered.  Future studies are needed to assess the impact 

of equal temperament on the human interpretation of intervals and harmony.  These 

studies can help to decide if and how the tuning of fixed pitch instruments could be 

improved with new technology. 
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With the combination of MIDI (Musical Instrument Digital Interface) and other 

technological developments such as self-tuning grand pianosxxxvi, fixed pitch instruments 

could someday evolve into responsive dynamically tuned instruments.  If this does 

happen, music theorists and mathematicians will probably debate the weaknesses and 

strengths of various programs for these new instruments.  However, having been 

conditioned to equal temperament for two centuries, the first debate may be whether or 

not change is desired.
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APPENDIX A – ORIGINAL DATA SET FOR THIS STUDY 

  C C# D D# E F F# G G# A A# B C2 Date 1/4 Type Country ET_MD ET_SD JST_MD JST_SD PTH_MD PTH_SD Reference 

van Zwolle 
(transposed 
Pythagorean) 

0 90 204 294 408 498 588 702 816 906 996 1110 1200 1440 1 P France 7.11 8.61 15.91 21.69 4.44 10.62 http://www.terryblackbur
n.us/music/temperamen
t/#project  
http://www.xs4all.nl/~hu
ygensf/doc/bib.html  

Erlangen 
(anonymous, 
transposed 
Pythagorean 

0 92 204 294 386 498 590 702 794 906 996 1088 1200 1475 1 P Germany 6.73 8.07 10.00 15.56 10.00 15.56 Tuning and 
Temperamenti 

Ramis (transposed 
Pythagorean) 

0 92 182 294 386 498 590 702 792 884 996 1088 1200 1482 1 P Spain 9.09 10.99 9.82 15.28 14.18 18.65 Tuning and 
Temperamenti 

Pythagorean 
(published by 
Hugo de 
Reutlingen) 

0 114 204 294 408 498 612 702 816 906 996 1110 1200 1488 1 P France 7.64 9.34 20.00 26.03 0.00 0.00 Tuning and 
Temperamenti 

Grammateus' 0 102 204 306 408 498 600 702 804 906 1008 1110 1200 1518 1 MMT Germany 4.73 5.87 14.55 19.49 5.45 8.49 Tuning and 
Temperamenti 

Meantone (-1/4 
Aron) 

0 76 193 310 386 503 579 697 773 890 1007 1083 1200 1523 1 MT Italy 13.00 15.96 6.09 7.40 20.64 25.30 Tuning and 
Temperamenti 

Fogliano #1 0 70 182 316 386 498 568 702 772 884 996 1088 1200 1529 1 J Italy 15.82 19.77 6.00 12.05 22.00 28.68 Tuning and 
Temperamenti 

Fogliano #2 0 70 204 316 386 498 568 702 772 884 1018 1088 1200 1529 1 J Italy 15.82 19.77 2.00 6.96 22.00 28.68 Tuning and 
Temperamenti 

Agricola 0 92 204 296 408 498 590 702 794 906 996 1110 1200 1539 2 J Germany 5.82 6.75 13.82 18.18 6.18 12.07 Tuning and 
Temperamenti 

Ganassi (just 
w/mean 
semitones) 

0 88 182 281 386 498 597 702 790 884 983 1088 1200 1543 2 MMT Italy 11.36 13.53 12.27 19.06 16.45 19.62 Tuning and 
Temperamenti 

Agricola 0 110 204 314 408 498 608 702 812 906 1016 1110 1200 1545 2 WT Germany 8.36 9.92 15.27 22.32 4.73 9.21 Tuning and 
Temperamenti 

Bermudo's 
Vihuela 

0 103 200 294 401 498 601 698 792 899 996 1099 1200 1555 2 WT Spain 2.59 3.62 14.10 17.70 7.25 10.38 Tuning and 
Temperamenti 

Zarlino (-2/7) 0 70 191 313 383 504 574 696 817 887 1008 1078 1200 1558 2 MT Italy 14.82 17.76 10.45 16.58 19.55 24.77 Tuning and 
Temperamenti 

Salinas (-1/3) 0 64 190 316 379 505 569 695 758 884 1010 1074 1200 1577 2 MT Spain 19.82 24.29 8.91 11.30 27.45 33.63 Tuning and 
Temperamenti 

Schneegass 
(geometric) 

0 79 194 309 389 504 585 698 812 892 1005 1085 1200 1590 2 MT Germany 9.82 11.76 9.82 14.69 15.27 19.00 Tuning and 
Temperamenti 

Artusi #1 0 97 193 290 386 503 600 697 794 890 987 1083 1200 1603 2 MMT Italy 7.82 9.83 13.45 17.84 13.64 16.29 Tuning and 
Temperamenti 
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Artusi #2 0 97 197 294 394 502 599 698 795 895 992 1092 1200 1603 2 MMT Italy 4.45 5.26 13.18 16.68 10.27 12.79 Tuning and 
Temperamenti 

Reinhard (just 
w/mean 
semitones) 

0 99 204 292 386 498 597 702 790 884 983 1088 1200 1604 2 MMT Germany 8.09 10.41 10.27 17.36 12.45 16.59 Tuning and 
Temperamenti 

De Caus 0 70 182 274 386 498 568 702 772 884 996 1088 1200 1615 2 J Germany 16.73 20.80 9.82 17.93 21.82 28.54 Tuning and 
Temperamenti 

Colonna #1 0 70 182 287 386 498 568 702 732 884 989 1088 1200 1618 2 MJ Italy 19.82 27.87 12.91 20.62 24.91 36.00 Tuning and 
Temperamenti 

Colonna #2 0 70 204 316 386 498 618 702 814 884 1018 1048 1200 1618 2 MJ Italy 16.91 22.76 10.00 20.37 18.36 27.85 Tuning and 
Temperamenti 

Kepler #1 0 92 204 316 386 498 590 702 794 906 1018 1088 1200 1619 2 J Germany 8.91 10.86 6.00 12.05 14.00 18.41 Tuning and 
Temperamenti 

Kepler #2 0 92 204 316 386 498 590 702 814 906 1018 1088 1200 1619 2 J Germany 9.64 11.58 7.82 16.53 12.18 17.05 Tuning and 
Temperamenti 

Mersenne Spinet 
#1 

0 112 182 316 386 498 610 702 814 884 996 1088 1200 1636 3 J France 10.91 12.81 13.45 22.13 10.55 15.59 Tuning and 
Temperamenti 

Mersenne Spinet 
#2 

0 70 204 274 386 498 568 702 772 884 996 1088 1200 1636 3 J France 15.45 20.05 7.82 16.53 19.82 27.68 Tuning and 
Temperamenti 

Mersenne's 
Improved 
Meantone #1 

0 76 193 299 386 503 579 697 773 890 1001 1083 1200 1648 3 MMT France 11.64 15.49 7.64 9.84 19.09 24.64 Tuning and 
Temperamenti 

Mersenne's 
Improved 
Meantone #2 

0 76 193 288 386 503 579 697 773 890 996 1083 1200 1648 3 MMT France 12.91 15.99 9.09 12.88 18.73 24.61 Tuning and 
Temperamenti 

Rossi (-1/5) 0 83 195 307 390 502 586 698 781 893 1005 1088 1200 1666 3 MT Italy 9.09 11.16 7.09 8.52 16.73 20.50 Tuning and 
Temperamenti 

Rossi (-2/9) 0 79 194 308 389 503 582 697 777 892 1006 1085 1200 1666 3 MT Italy 11.09 13.63 6.91 7.81 18.73 22.97 Tuning and 
Temperamenti 

Werckmeister #1 0 90 192 294 390 498 588 696 792 888 996 1092 1200 1691 3 WT Germany 7.64 8.67 10.55 14.14 13.09 16.97 Tuning and 
Temperamenti 

Werckmeister #2 0 90 196 294 392 498 596 694 792 890 996 1094 1200 1691 3 WT Germany 6.18 6.99 11.27 14.28 11.64 15.18 Tuning and 
Temperamenti 

Werckmeister #3 0 96 204 300 396 504 600 702 792 900 1002 1098 1200 1691 3 WT Germany 2.73 3.74 11.82 14.76 9.27 12.15 Tuning and 
Temperamenti 

Werckmeister #4 0 82 196 294 392 498 588 694 784 890 1004 1086 1200 1691 3 WT Germany 8.90 10.69 8.40 10.91 15.11 19.54 http://www.terryblackbur
n.us/music/temperamen
t/#project  

Werckmeister #5 0 96 204 300 396 504 600 702 792 900 1002 1098 1200 1691 3 WT Germany 2.68 3.67 11.85 14.80 9.25 12.10 http://www.terryblackbur
n.us/music/temperamen
t/#project  

Werckmeister #6 
(1/7 comma) 

0 91 186 298 395 498 595 698 793 893 1000 1097 1200 1691 3 WT Germany 5.09 6.68 12.00 14.62 12.00 14.92 Tuning and 
Temperamenti 

Neidhardt's Fifth 
Circle #01 

0 94 196 296 392 498 592 698 796 894 996 1092 1200 1706 3 WT Germany 5.09 5.80 11.27 15.07 10.91 14.17 Tuning and 
Temperamenti 

Neidhardt's Fifth 
Circle #02 

0 102 204 298 400 502 604 698 800 902 1004 1098 1200 1706 3 WT Germany 2.18 2.68 14.18 17.82 7.27 8.94 Tuning and 
Temperamenti 
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Neidhardt's Fifth 
Circle #03 

0 102 200 302 400 502 600 702 800 902 1000 1102 1200 1706 3 WT Germany 1.09 1.55 14.18 17.82 7.27 8.94 Tuning and 
Temperamenti 

Neidhardt's Fifth 
Circle #04 

0 96 198 300 396 498 600 696 798 900 996 1098 1200 1706 3 WT Germany 2.18 2.83 13.45 16.49 8.73 11.06 Tuning and 
Temperamenti 

Neidhardt's Fifth 
Circle #05 

0 100 200 298 402 502 600 700 800 898 1002 1102 1200 1706 3 WT Germany 1.09 1.55 14.18 17.46 7.64 9.21 Tuning and 
Temperamenti 

Neidhardt's Fifth 
Circle #06 

0 100 196 300 400 496 600 700 796 900 1000 1096 1200 1706 3 WT Germany 1.45 2.53 13.45 16.57 8.73 10.77 Tuning and 
Temperamenti 

Neidhardt's Fifth 
Circle #07 

0 94 194 298 400 494 596 696 800 892 996 1098 1200 1706 3 WT Germany 3.82 4.77 13.64 16.48 10.00 12.18 Tuning and 
Temperamenti 

Neidhardt's Fifth 
Circle #09 

0 98 196 300 400 498 596 700 800 898 996 1100 1200 1706 3 WT Germany 1.64 2.45 13.64 17.17 8.18 10.49 Tuning and 
Temperamenti 

Neidhardt's Fifth 
Circle #10 

0 94 198 298 392 498 596 696 796 894 996 1094 1200 1706 3 WT Germany 4.36 4.98 11.64 14.97 10.55 13.42 Tuning and 
Temperamenti 

Neidhardt's Fifth 
Circle #11 

0 96 198 296 394 500 598 700 800 894 996 1098 1200 1706 3 WT Germany 2.73 3.63 12.91 16.48 8.91 11.44 Tuning and 
Temperamenti 

Neidhardt's Fifth 
Circle #12 

0 100 198 300 396 498 600 700 798 900 996 1098 1200 1706 3 WT Germany 1.45 2.19 13.45 17.06 8.00 10.32 Tuning and 
Temperamenti 

Neidhardt's Third 
Circle #01 

0 94 198 296 390 498 592 700 794 894 998 1092 1200 1706 3 WT Germany 4.91 6.03 10.36 14.27 11.09 14.57 Tuning and 
Temperamenti 

Neidhardt's Third 
Circle #03 

0 96 196 296 394 500 598 698 796 896 1002 1092 1200 1706 3 WT Germany 3.64 4.38 12.00 15.10 10.55 12.90 Tuning and 
Temperamenti 

Neidhardt's Third 
Circle #04 

0 96 196 296 396 498 596 698 796 894 1000 1094 1200 1706 3 WT Germany 3.64 4.20 12.00 15.26 10.18 12.74 Tuning and 
Temperamenti 

Neidhardt's Third 
Circle #05 

0 100 200 300 398 502 598 700 800 900 1000 1098 1200 1706 3 WT Germany 0.73 1.26 13.45 16.92 8.36 10.08 Tuning and 
Temperamenti 

Malcolm 0 112 204 316 386 498 590 702 814 884 996 1088 1200 1721 4 J England 9.64 11.54 9.64 20.03 10.36 15.58 Tuning and 
Temperamenti 

Malcolm (just 
w/mean 
semitones) 

0 105 204 298 386 498 603 702 796 884 989 1088 1200 1721 4 MMT England 6.82 8.92 10.82 17.71 10.45 14.42 Tuning and 
Temperamenti 

Neidhardt's 
Circulating #2 

0 96 196 298 394 500 596 698 796 894 1000 1096 1200 1724 4 WT Germany 3.27 4.00 12.00 14.99 10.55 12.77 Tuning and 
Temperamenti 

Neidhardt's 
Circulating #3 

0 96 196 298 394 498 596 696 796 894 998 1096 1200 1724 4 WT Germany 3.82 4.24 12.18 15.30 10.36 12.79 Tuning and 
Temperamenti 

Rameau's Mod. 
Meantone 

0 87 193 298 386 503 585 697 789 890 1007 1083 1200 1726 4 MMT France 9.27 11.05 9.09 11.31 16.55 19.91 Tuning and 
Temperamenti 

Neidhardt's 
Sample #2 

0 90 194 294 386 496 590 698 792 890 994 1088 1200 1732 4 MJ Germany 8.00 9.12 9.82 14.20 13.45 17.27 Tuning and 
Temperamenti 

Neidhardt's 
Sample #3 

0 92 196 296 388 498 592 698 794 892 996 1090 1200 1732 4 MJ Germany 6.18 7.27 10.18 14.17 12.00 15.65 Tuning and 
Temperamenti 

Bendeler #1 0 90 188 294 392 498 596 694 792 890 996 1094 1200 1739 4 WT Germany 6.91 7.85 12.00 14.94 12.36 15.80 Tuning and 
Temperamenti 

Bendeler #2 0 90 196 294 392 498 596 694 792 890 996 1094 1200 1739 4 WT Germany 6.18 6.99 11.27 14.28 11.64 15.18 Tuning and 
Temperamenti 

Bendeler #3 0 96 192 294 396 498 594 696 798 894 996 1092 1200 1739 4 WT Germany 4.91 5.55 12.91 16.53 10.36 13.28 Tuning and 
Temperamenti 
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Euler 0 70 204 274 386 498 590 702 772 884 976 1088 1200 1739 4 J Russia 15.27 19.12 7.64 18.78 19.64 25.71 Tuning and 
Temperamenti 

Leven #1 0 112 231 316 404 498 597 702 814 933 996 1129 1200 1743 4 LD France 13.64 18.80 22.55 30.32 10.73 15.97 Tuning and 
Temperamenti 

Leven #2 0 112 231 316 404 498 597 702 814 902 996 1095 1200 1743 4 LD France 8.64 12.79 16.64 23.42 8.27 13.05 Tuning and 
Temperamenti 

Silbermann (-1/6) 0 89 197 305 394 502 590 698 787 895 1003 1092 1200 1748 4 MT Germany 6.18 7.52 8.91 11.02 13.82 16.86 Tuning and 
Temperamenti 

Harrison (-3/10) 0 69 191 314 382 504 573 696 764 887 1009 1078 1200 1749 4 MT England 17.00 20.86 7.18 8.97 24.64 30.20 Tuning and 
Temperamenti 

Smith (5/18) 0 72 192 312 384 504 576 696 768 888 1008 1080 1200 1749 4 MT England 15.27 18.68 6.55 7.95 22.91 28.01 Tuning and 
Temperamenti 

Gallimard's Mod. 
Meantone #1 

0 84 193 297 386 504 582 696 789 890 1007 1083 1200 1754 4 MMT France 10.09 11.94 9.36 11.34 17.18 20.79 Tuning and 
Temperamenti 

Gallimard's Mod. 
Meantone #2 

0 81 193 293 386 504 581 696 785 890 1007 1083 1200 1754 4 MMT France 11.18 13.08 9.18 11.29 17.73 21.90 Tuning and 
Temperamenti 

Montvallon 0 92 204 316 386 498 590 702 794 884 996 1088 1200 1758 4 J France 8.55 10.45 6.00 12.05 14.00 18.41 Tuning and 
Temperamenti 

Rousseau 0 70 204 316 386 498 568 702 814 884 954 1088 1200 1768 4 J France 17.09 22.61 11.64 25.19 20.00 27.52 Tuning and 
Temperamenti 

Marpurg 
Temperament I 

0 105 204 302 400 506 604 702 800 906 1004 1102 1200 1776 4 WT Poland 3.18 3.96 14.82 18.81 6.64 8.49 Tuning and 
Temperamenti 

Marpurg's 
Monochord #1 

0 70 204 316 386 498 590 702 772 884 1018 1088 1200 1776 4 J Poland 13.82 17.27 0.00 0.00 20.00 26.03 Tuning and 
Temperamenti 

Marpurg's 
Monochord #2 

0 92 204 316 386 498 590 702 794 906 1018 1088 1200 1776 4 J Poland 8.91 10.86 6.00 12.05 14.00 18.41 Tuning and 
Temperamenti 

Marpurg's 
Monochord #3 

0 70 204 306 386 498 590 702 772 906 996 1088 1200 1776 4 J Poland 10.73 14.95 4.91 10.33 15.09 23.38 Tuning and 
Temperamenti 

Marpurg's 
Monochord #4 

0 70 182 316 386 498 568 702 772 884 1018 1088 1200 1776 4 J Poland 17.09 20.53 4.00 9.84 24.00 29.52 Tuning and 
Temperamenti 

Marpurg's 
Temperament #1 

0 102 202 304 400 502 602 704 800 902 1002 1104 1200 1776 4 WT Poland 2.18 2.68 14.18 17.75 7.27 8.81 Tuning and 
Temperamenti 

Marpurg's 
Temperament #2 

0 96 194 297 400 496 594 697 800 896 994 1097 1200 1776 4 WT Poland 3.55 4.28 13.91 17.21 9.55 11.74 Tuning and 
Temperamenti 

Marpurg's 
Temperament A 

0 102 200 300 402 500 602 700 802 902 1000 1102 1200 1776 4 WT Poland 1.09 1.55 14.91 18.57 6.55 7.95 Tuning and 
Temperamenti 

Marpurg's 
Temperament B 

0 98 198 298 400 500 600 698 798 898 1000 1100 1200 1776 4 WT Poland 1.09 1.55 13.82 16.73 8.36 10.20 Tuning and 
Temperamenti 

Marpurg's 
Temperament C 

0 98 200 300 400 498 600 700 800 898 1000 1100 1200 1776 4 WT Poland 0.55 1.10 13.27 16.75 7.82 9.78 Tuning and 
Temperamenti 

Marpurg's 
Temperament D 

0 98 198 300 398 498 600 698 798 900 998 1098 1200 1776 4 WT Poland 1.45 1.79 13.45 16.64 8.36 10.47 Tuning and 
Temperamenti 

Marpurg's 
Temperament E 

0 100 202 302 402 502 602 700 800 900 1000 1100 1200 1776 4 WT Poland 0.91 1.41 14.00 17.40 7.45 9.10 Tuning and 
Temperamenti 

Marpurg's 
Temperament G 
(1/5 comma) 

0 100 199 299 398 498 602 702 802 901 1001 1100 1200 1776 4 WT Poland 1.27 1.55 13.82 17.67 7.09 8.90 Tuning and 
Temperamenti 
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Mercadier 
(1/12,1/6) 

0 94 197 296 394 500 594 698 794 895 998 1094 1200 1777 4 WT France 4.18 4.88 11.64 14.72 10.73 13.63 Tuning and 
Temperamenti 

Kirnberger #1 0 90 204 294 386 498 590 702 792 895 996 1088 1200 1779 4 WT Germany 7.00 8.40 8.64 13.74 11.36 16.51 http://www.terryblackbur
n.us/music/temperamen
t/#project  

Kirnberger #3 0 90 193 294 386 498 590 697 792 890 996 1088 1200 1779 4 WT Germany 7.72 8.90 9.73 13.97 13.23 17.19 http://www.terryblackbur
n.us/music/temperamen
t/#project  

Vallotti 
Circulating 

0 94 196 298 392 502 592 698 796 894 1000 1090 1200 1781 4 WT Italy 4.73 5.87 10.91 14.28 12.00 14.59 http://music.cwru.edu/du
ffin/Vallotti/T1/page2.ht
ml   
http://mmd.foxtail.com/T
ech/jorgensen.html  

von Wiese #1 0 90 204 294 408 498 600 702 792 906 996 1110 1200 1793 4 WT Germany 5.45 6.63 14.55 18.22 5.45 11.38 Tuning and 
Temperamenti 

von Wiese #2 0 90 204 294 386 498 590 702 792 895 996 1088 1200 1793 4 WT Germany 7.00 8.40 8.64 13.74 11.36 16.51 Tuning and 
Temperamenti 

von Wiese #3 0 102 204 306 408 498 600 702 804 906 996 1110 1200 1793 4 WT Germany 4.36 5.44 15.64 20.45 4.36 7.59 Tuning and 
Temperamenti 

Young Circulating 
#1 

0 94 196 298 392 500 592 698 796 894 1000 1092 1200 1800 4 WT England 4.36 5.51 10.91 14.28 11.64 14.28 Tuning and 
Temperamenti 

Young Circulating 
#2 

0 90 196 294 392 498 588 698 792 894 996 1090 1200 1800 4 WT England 6.55 7.64 10.55 14.11 12.00 16.15 http://music.cwru.edu/du
ffin/Vallotti/T1/page2.ht
ml  

Stanhope (1/3 
comma) 

0 91 197 295 386 498 589 702 793 892 996 1088 1200 1806 4 WT England 7.00 8.44 9.18 13.86 12.27 16.74 Tuning and 
Temperamenti 

  
P=Pythagorean ET_MD =Equal Temperament Standard, Mean Deviation 
MT=Mean Tone  ET_SD  =Equal Temperament Standard, Standard Deviation 
MMT=Modified Mean Tone JST_MD=Just Intonation Standard, Mean Deviation 
J=Just Intonation JST_SD =Just Intonation Standard, Standard Deviation 
MJ=Modified Just Intonation PTH_MD=Pythagorean Standard, Mean Deviation 
WT=Well Temperament PTH_SD=Pythagorean Standard, Standard Deviation 
LD=Linear Divisions (not common)   
  
i. Barbour, J. Murry.  Tuning and Tmperament – A Historical Survey, Michigan State College Press, East Lansing (1951) 
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APPENDIX B -- SPREAD & LINEAR REGRESSIONS ON ORIGINAL DATA 
 
  

Spread of Data (all 93) Spread of Data with Square Root Transformation (all 93) 
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ET_MD =Equal Temperament Standard, Mean Deviation 
ET_SD  =Equal Temperament Standard, Standard Deviation 
JST_MD=Just Intonation Standard, Mean Deviation 
JST_SD =Just Intonation Standard, Standard Deviation 
PT_MD=Pythagorean Standard, Mean Deviation 
PT_SD=Pythagorean Standard, Standard Deviation 
SR after a variable name indicates square root transformation 
 
Linear Regression of Mean deviation from Equal Temperament by Date 
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S = 0.899530      R-Sq =  9.5 %      R-Sq(adj) = 8.5 %

sqrtET_MD = 8.05840 - 0.0032397 Date

95% CI

Regression

 
 
Regression Analysis: sqrtET_MD versus Date, And Countries with Residual Graphs 
  
The regression equation is 
sqrtET_MD = 5.91 - 0.00161 Date - 1.10 Poland - 0.981 Germany 
  
Predictor        Coef     SE Coef          T        P 
Constant        5.910       1.639       3.60    0.001 
Date       -0.0016092   0.0009841      -1.64    0.106 
Poland        -1.1008      0.2729      -4.03    0.000 
Germany       -0.9810      0.1751      -5.60    0.000 
  
S = 0.7701      R-Sq = 35.2%     R-Sq(adj) = 33.0% 
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Analysis of Variance 
  
Source            DF          SS          MS         F        P 
Regression         3     28.6155      9.5385     16.08    0.000 
Residual Error    89     52.7814      0.5930 
Total             92     81.3969 
  
Source       DF      Seq SS 
Date          1      7.7638 
Poland        1      2.2260 
Germany       1     18.6257 
  
Unusual Observations 
Obs       Date   sqrtET_M         Fit      SE Fit    Residual    St Resid 
 12       1555     1.6100      3.4072      0.1640     -1.7972       -2.39R  
 19       1615     4.0900      2.3297      0.1388      1.7603        2.32R  
 72       1776     3.7200      1.9508      0.2136      1.7692        2.39R  
 75       1776     4.1300      1.9508      0.2136      2.1792        2.95R  
  
R denotes an observation with a large standardized residual 
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All Regressions Tried on Original Data Set 
 

Regression Analysis: sqrtET_MD versus Date 
  
The regression equation is                             
sqrtET_MD = 8.05840 - 0.0032397 Date                   
                                                       
S = 0.899530      R-Sq =  9.5 %      R-Sq(adj) = 8.5 % 
  
Analysis of Variance 
  
Source            DF        SS         MS        F      P 
Regression         1    7.7638    7.76384  9.59500  0.003 
Error             91   73.6331    0.80915                 
Total             92   81.3969                            
  

Regression Analysis: sqrtET_SD versus Date 
  
The regression equation is                            
sqrtET_SD = 8.88756 - 0.0035527 Date                  
                                                      
S = 0.996317      R-Sq = 9.4 %      R-Sq(adj) = 8.4 % 
  
Analysis of Variance 
  
Source            DF         SS         MS        F      P 
Regression         1     9.3366    9.33661  9.40576  0.003 
Error             91    90.3309    0.99265                 
Total             92    99.6675                            

Regression Analysis: sqrtJST_MD versus Date 
The regression equation is                            
sqrtJST_MD = 3.57581 - 0.0001798 Date                 
                                                      
S = 0.623986      R-Sq = 0.1 %      R-Sq(adj) = 0.0 % 
  
Analysis of Variance 
  
Source            DF        SS         MS        F      P 
Regression         1    0.0239   0.023918 6.14E-02  0.805 
Error             91   35.4317   0.389359                 
Total             92   35.4556                            
  

Regression Analysis: sqrtPTH_MD versus Date 
  
The regression equation is                            
sqrtPTH_MD = 3.65839 - 0.0001224 Date                 
                                                      
S = 0.807874      R-Sq = 0.0 %      R-Sq(adj) = 0.0 % 
  
Analysis of Variance 
  
Source            DF         SS         MS        F      P 
Regression         1     0.0111   0.011079 1.70E-02  0.897 
Error             91    59.3921   0.652661                 
Total             92    59.4032                            
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Regression Analysis: sqrtPTH_SD versus Date 
  
The regression equation is                            
sqrtPTH_SD = 5.15643 - 0.0007037 Date                 
                                                      
S = 0.882887      R-Sq = 0.5 %      R-Sq(adj) = 0.0 % 
  
Analysis of Variance 
  
Source            DF        SS         MS        F      P 
Regression         1    0.3663   0.366273 0.469889  0.495 
Error             91   70.9335   0.779489                 
Total             92   71.2998                            
  

Regression Analysis: sqrtPTH_SD versus Date 
  
The regression equation is                            
sqrtPTH_SD = 5.15643 - 0.0007037 Date                 
                                                      
S = 0.882887      R-Sq = 0.5 %      R-Sq(adj) = 0.0 % 
  
Analysis of Variance 
  
Source            DF         SS         MS        F      P 
Regression         1     0.3663   0.366273 0.469889  0.495 
Error             91    70.9335   0.779489                 
Total             92    71.2998                           
 

Regression Analysis: sqrtJST_MD versus Date 
  
The regression equation is                            
sqrtJST_MD = 3.57581 - 0.0001798 Date                 
                                                      
S = 0.623986      R-Sq = 0.1 %      R-Sq(adj) = 0.0 % 
  
Analysis of Variance 
  
Source            DF        SS         MS        F      P 
Regression         1    0.0239   0.023918 6.14E-02  0.805 
Error             91   35.4317   0.389359                 
Total             92   35.4556                            
  

Regression Analysis: sqrtJST_SD versus Date 
  
The regression equation is                            
sqrtJST_SD = 5.46406 - 0.0009327 Date                 
                                                      
S = 0.652843      R-Sq = 1.6 %      R-Sq(adj) = 0.6 % 
  
Analysis of Variance 
  
Source            DF         SS         MS        F      P 
Regression         1     0.6435   0.643524  1.50990  0.222 
Error             91    38.7845   0.426203                 
Total             92    39.4280               
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APPENDIX C -- REGRESSIONS ON THE MODIFIED DATA (TWO TUNINGS PER 
PUBLICATION) 

  
Regression of Mean Deviation (with a square root transformation) from Equal Temperament by 
Date 
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sqrtET_MD = 5.30085 - 0.0013901 Date

S = 0.711996      R-Sq = 3.7 %      R-Sq(adj) = 2.2 %

Regression
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Regression Analysis: sqrtET_MD versus Date and Country of Publication (filtered by stepwise) 
 
 sqrtET_MD = 5.40 - 0.00131 Date - 0.603 Germany 
  
Predictor        Coef     SE Coef          T        P 
Constant        5.396       1.379       3.91    0.000 
Date       -0.0013119   0.0008239      -1.59    0.116 
Germany       -0.6030      0.1686      -3.58    0.001 
  
S = 0.6526      R-Sq = 20.4%     R-Sq(adj) = 17.8% 
  
Analysis of Variance 
Source            DF          SS          MS         F        P 
Regression         2      6.6643      3.3322      7.82    0.001 
Residual Error    61     25.9790      0.4259 
Total             63     32.6433 
  
Source       DF      Seq SS 
Date          1      1.2131 
Germany       1      5.4512 
  
Unusual Observations 
Obs       Date   sqrtET_M         Fit      SE Fit    Residual    St Resid 
 12       1555     1.6100      3.3563      0.1399     -1.7463       -2.74R  
 19       1615     4.0900      2.6745      0.1421      1.4155        2.22R  
 53       1776     1.7800      3.0664      0.1354     -1.2864       -2.02R  
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Various Curve Fitting Model Attempts 
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S = 0.696995      R-Sq = 9.2 %      R-Sq(adj) = 6.2 %
 - 0.0000191 Date**2

sqrtET_MD = -46.2390 + 0.0615042 Date

95% CI

Regression

Regression Plot
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S = 0.669120      R-Sq = 1.9 %      R-Sq(adj) = 0.0 %
 + 0.0000044 Date**2

sqrtJST_MD = 16.3236 - 0.0151846 Date

95% CI

Regression

Regression Plot
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S = 0.796802      R-Sq = 15.8 %      R-Sq(adj) = 13.0 %
 - 0.0000366 Date**2

sqrtPTH_MD = -96.7791 + 0.121444 Date

95% CI

Regression

Regression Plot

 
ET_MD =Equal Temperament Standard, Mean Deviation 
ET_SD  =Equal Temperament Standard, Standard Deviation 
JST_MD=Just Intonation Standard, Mean Deviation 
JST_SD =Just Intonation Standard, Standard Deviation 
PTH_MD=Pythagorean Standard, Mean Deviation 
PTH_SD=Pythagorean Standard, Standard Deviation 
sqrt before a variable name indicates square root transformation 
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APPENDIX D -- VARIANCE TESTS ON THE ORIGINAL DATA 
  

0.5 1.0 1.5

95% Confidence Intervals for Sigmas

Bartlett's Test

Test Statistic: 0.904

P-Value       : 0.825

Levene's Test

Test Statistic: 0.247

P-Value       : 0.863

Factor Levels

1

2

3

4

Test for Equal Variances for sqrtET_MD

 
0.5 1.0 1.5 2.0

95% Confidence Intervals for Sigmas

Bartlett's Test

Test Statistic: 0.824

P-Value       : 0.844

Levene's Test

Test Statistic: 0.213

P-Value       : 0.887

Factor Levels

1

2

3

4

Test for Equal Variances for sqrtET_SD

 

0.0 0.5 1.0 1.5 2.0 2.5

95% Confidence Intervals for Sigmas

Bartlett's Test

Test Statistic: 21.202

P-Value       :  0.000

Levene's Test

Test Statistic: 2.933

P-Value       : 0.038

Factor Levels

1

2

3

4

Test for Equal Variances for sqrtJST_MD

 
0 1 2

95% Confidence Intervals for Sigmas

Bartlett's Test

Test Statistic: 19.368

P-Value       :  0.000

Levene's Test

Test Statistic: 2.097

P-Value       : 0.106

Factor Levels

1

2

3

4

Test for Equal Variances for sqrtJST_SD

 

0 1 2 3 4

95% Confidence Intervals for Sigmas

Bartlett's Test

Test Statistic: 20.002

P-Value       :  0.000

Levene's Test

Test Statistic: 6.429

P-Value       : 0.001

Factor Levels

1

2

3

4

Test for Equal Variances for sqrtPTH_MD

 0 1 2 3 4 5

95% Confidence Intervals for Sigmas

Bartlett's Test

Test Statistic: 17.807

P-Value       :  0.000

Levene's Test

Test Statistic: 3.853

P-Value       : 0.012

Factor Levels

1

2

3

4

Test for Equal Variances for sqrtPTH_SD

ET_MD =Equal Temperament Standard, Mean Deviation 
ET_SD  =Equal Temperament Standard, Standard Deviation 
JST_MD=Just Intonation Standard, Mean Deviation 
JST_SD =Just Intonation Standard, Standard Deviation 
PTH_MD=Pythagorean Standard, Mean Deviation 
PTH_SD=Pythagorean Standard, Standard Deviation 
sqrt before a variable name indicates square root transformation 



The Development of the Equal Temperament Scale   64 

 

ANOVA’s and Mood’s median tests performed on original data set. 
Analysis of Variance for sqrtET_M 
Source     DF        SS        MS        F        P 
Quarters    3    13.305     4.435     5.80    0.001 
Error      89    68.092     0.765 
Total      92    81.397 
                                   Individual 95% CIs For Mean 
Level       N      Mean     StDev  ----------+---------+---------+------ 
1           8    3.0975    0.6804             (----------*---------)  
2          15    3.2127    0.8445                  (-------*------)  
3          27    2.1459    0.8771  (-----*----)  
4          43    2.5393    0.9111          (---*----)  
                                   ----------+---------+---------+------ 
Pooled StDev =   0.8747                    2.40      3.00      3.60 

Analysis of Variance for sqrtET_S 
Source     DF        SS        MS        F        P 
Quarters    3    16.005     5.335     5.68    0.001 
Error      89    83.662     0.940 
Total      92    99.668 
                                   Individual 95% CIs For Mean 
Level       N      Mean     StDev  ------+---------+---------+---------+ 
1           8    3.4325    0.7710              (----------*-----------)  
2          15    3.5913    0.9847                    (-------*-------)  
3          27    2.4148    0.9394  (-----*-----)  
4          43    2.8249    1.0116          (----*----)  
                                   ------+---------+---------+---------+ 
Pooled StDev =   0.9696                2.40      3.00      3.60      4.20 

Mood Median Test: sqrtJST_MD versus Quarters 
Chi-Square = 2.95   DF = 3   P = 0.399 
                                        Individual 95.0% CIs 
Quarters   N<=    N>   Median    Q3-Q1  ---+---------+---------+---------+--- 
1            5     3     3.15     1.49   (--------------+----------------) 
2            8     7     3.23     0.54                  (-+-------) 
3           10    17     3.46     0.45                      (-+---) 
4           24    19     3.30     0.74                 (---+--) 
                                        ---+---------+---------+---------+--- 
                                        2.50      3.00      3.50      4.00 
Overall median = 3.36 

Mood Median Test: sqrtJST_SD versus Quarters 
Chi-Square = 6.86   DF = 3   P = 0.076 
                                        Individual 95.0% CIs 
Quarters   N<=    N>   Median    Q3-Q1  -----+---------+---------+---------+- 
1            4     4     3.93     1.69  (-------------------+------------) 
2            3    12     4.21     0.30                         (-+-) 
3           15    12     3.89     0.33                     (+--) 
4           25    18     3.84     0.74                    (+---) 
                                        -----+---------+---------+---------+- 
                                          3.00      3.60      4.20      4.80 
Overall median = 3.91 

Mood Median Test: sqrtPTH_MD versus Quarters 
Chi-Square = 6.28   DF = 3   P = 0.099 
                                        Individual 95.0% CIs 
Quarters   N<=    N>   Median    Q3-Q1  ------+---------+---------+---------+ 
1            4     4     3.47     2.49   (-----------------+---------------) 
2            4    11     3.74     1.21                   (-----+-------) 
3           18     9     3.25     0.67               (---+-) 
4           21    22     3.41     0.85                  (--+) 
                                        ------+---------+---------+---------+ 
                                           2.40      3.20      4.00      4.80 
Overall median = 3.37 

Mood Median Test: sqrtPTH_SD versus Quarters 
Chi-Square = 7.95   DF = 3   P = 0.047 
                                        Individual 95.0% CIs 
Quarters   N<=    N>   Median    Q3-Q1  ------+---------+---------+---------+ 
1            4     4     4.13     2.28  (-----------------+--------------) 
2            4    11     4.29     1.70               (------+----------) 
3           19     8     3.59     0.84          (--+---) 
4           20    23     3.96     0.86              (--+-) 
                                        ------+---------+---------+---------+ 
                                           3.20      4.00      4.80      5.60 
Overall median = 3.94 
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APPENDIX E – AVERAGES FROM EACH PUBLICATION 
 

  Date Quarters Type Country ET_MD ET_SD JST_MD JST_SD PTH_MD PTH_SD 

van Zwolle 
(transposed 
Pythagorean) 

1440 1 P France 7.11 8.61 15.91 21.69 4.44 10.62 

Erlangen 
(anonymous, 
transposed 
Pythagorean 

1475 1 P Germany 6.73 8.07 10.00 15.56 10.00 15.56 

Ramis (transposed 
Pythagorean) 

1482 1 P Spain 9.09 10.99 9.82 15.28 14.18 18.65 

Pythagorean 
(published by Hugo 
de Reutlingen) 

1488 1 P France 7.64 9.34 20.00 26.03 0.00 0.00 

Grammateus' 1518 1 MMT Germany 4.73 5.87 14.55 19.49 5.45 8.49 

Meantone (-1/4 
Aron) 

1523 1 MT Italy 13.00 15.96 6.09 7.40 20.64 25.30 

Fogliano 1-2 1529 1 J Italy 15.82 19.77 4.00 9.50 22.00 28.68 

Agricola 1539 2 J Germany 5.82 6.75 13.82 18.18 6.18 12.07 

Ganassi (just 
w/mean 
semitones) 

1543 2 MMT Italy 11.36 13.53 12.27 19.06 16.45 19.62 

Agricola 1545 2 WT Germany 8.36 9.92 15.27 22.32 4.73 9.21 

Bermudo's Vihuela 1555 2 WT Spain 2.59 3.62 14.10 17.70 7.25 10.38 

Zarlino (-2/7) 1558 2 MT Italy 14.82 17.76 10.45 16.58 19.55 24.77 

Salinas (-1/3) 1577 2 MT Spain 19.82 24.29 8.91 11.30 27.45 33.63 

Schneegass 
(geometric) 

1590 2 MT Germany 9.82 11.76 9.82 14.69 15.27 19.00 

Artusi 1-2 1603 2 MMT Italy 6.14 7.55 13.32 17.26 11.95 14.54 

Reinhard (just 
w/mean 
semitones) 

1604 2 MMT Germany 8.09 10.41 10.27 17.36 12.45 16.59 

De Caus 1615 2 J Germany 16.73 20.80 9.82 17.93 21.82 28.54 

Colonna 1-2 1618 2 MJ Italy 18.36 25.31 11.45 20.49 21.64 31.93 

Kepler 1-2 1619 2 J Germany 9.27 11.22 6.91 14.29 13.09 17.73 

Mersenne 1-2 1636 3 J France 13.18 16.43 10.64 19.33 15.18 21.64 

Mersenne 
Improved 
Meantone 1-2 

1648 3 MMT France 12.27 15.74 8.36 11.36 18.91 24.63 

Rossi 1/5 and 2/9 1666 3 MT Italy 10.09 12.40 7.00 8.17 17.73 21.73 

Werckmeister 1-6 1691 3 WT Germany 5.54 6.74 10.98 13.92 11.73 15.14 

Neidhardt's 1st 
Pub 

1706 3 WT Germany 2.67 3.39 12.92 16.33 9.09 11.42 

Malcolm 1-2 1721 4 J England 8.23 10.23 10.23 18.87 10.41 15.00 

Neidhardt's 2nd 
Pub 

1724 4 WT Germany 3.55 4.12 12.09 15.15 10.45 12.78 

Rameau's Modified 
Meantone 

1726 4 MMT France 9.27 11.05 9.09 11.31 16.55 19.91 
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Neidhardt's 3rd 
Pub 

1732 4 MJ Germany 7.09 8.19 10.00 14.18 12.73 16.46 

Bendeler 1-3 1739 4 WT Germany 6.00 6.79 12.06 15.25 11.45 14.75 

Euler 1739 4 J Russia 15.27 19.12 7.64 18.78 19.64 25.71 

Leven 1-2 1743 4 LD France 11.14 15.80 19.59 26.87 9.50 14.51 

Silbermann (-1/6) 1748 4 MT Germany 6.18 7.52 8.91 11.02 13.82 16.86 

Harrison (-3/10) 1749 4 MT England 17.00 20.86 7.18 8.97 24.64 30.20 

Smith (5/18) 1749 4 MT England 15.27 18.68 6.55 7.95 22.91 28.01 

Gallimard's 
Modified Meantone 
1-2 

1754 4 MMT France 10.64 12.51 9.27 11.31 17.45 21.34 

Montvallon 1758 4 J France 8.55 10.45 6.00 12.05 14.00 18.41 

Rousseau 1768 4 J France 17.09 22.61 11.64 25.19 20.00 27.52 

Marpurg's Pub 1776 4 WT Poland 5.06 6.42 10.85 14.60 10.94 14.06 

Mercadier 
(1/12,1/6) 

1777 4 WT France 4.18 4.88 11.64 14.72 10.73 13.63 

Kirnberger 1&3 1779 4 WT Germany 7.36 8.65 9.18 13.86 12.30 16.85 

Vallotti Circulating 1781 4 WT Italy 4.73 5.87 10.91 14.28 12.00 14.59 

von Wiese 1-3 1793 4 WT Germany 5.61 6.82 12.94 17.47 7.06 11.83 

Young 1-2 1800 4 WT England 5.45 6.58 10.73 14.20 11.82 15.22 

Stanhope (1/3 
comma) 

1806 4 WT England 7.00 8.44 9.18 13.86 12.27 16.74 

 
 

ET_MD =Equal Temperament Standard, Mean Deviation 
ET_SD  =Equal Temperament Standard, Standard Deviation 
JST_MD=Just Intonation Standard, Mean Deviation 
JST_SD =Just Intonation Standard, Standard Deviation 
PTH_MD=Pythagorean Standard, Mean Deviation 
PTH_SD=Pythagorean Standard, Standard Deviation 
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APPENDIX F – SPREAD OF AVERAGED DATA 
 
Spread of Averaged Data 
 

44 44 44 44 44 44 N = 
PTH_S
D

PTH_M
D

JST_SD JST_M
D

ET_SD ET_M
D

40 

30 

20 

10 

0 

-10 

4 

31 

7 

31 4 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Spread of Transformed (square root) Averaged Data 

444444444444N =
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ET_MD =Equal Temperament Standard, Mean Deviation 
ET_SD  =Equal Temperament Standard, Standard Deviation 
JST_MD=Just Intonation Standard, Mean Deviation 
JST_SD =Just Intonation Standard, Standard Deviation 
PT_MD=Pythagorean Standard, Mean Deviation 
PT_SD=Pythagorean Standard, Standard Deviation 
SR after a variable name indicates a square root 

transformation 
Time Series Plot of Dates 
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APPENDIX G -- REGRESSION ANALYSIS OF AVERAGED DATA 
 

 Linear Regressions of each Deviation Variable 

1400 1500 1600 1700 1800
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R

ET_MD_SR = 4.45362 - 0.0008896 Date

S = 0.737412      R-Sq = 1.7 %      R-Sq(adj) = 0.0 %

Regression

95% CI

Regression Plot
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ET_SD_SR = 4.91140 - 0.0009678 Date

S = 0.846469      R-Sq = 1.5 %      R-Sq(adj) = 0.0 %

Regression
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Regression Plot
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JST_MD_SR = 4.69153 - 0.0008756 Date

S = 0.488841      R-Sq = 3.6 %      R-Sq(adj) = 1.4 %

Regression

95% CI

Regression Plot
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Regression Plot
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Regression

95% CI

Regression Plot
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Regression results for best combination of variables (by stepwise method) 
  
The regression equation is 
Date = 1696 - 98.2 ET_MD_SR + 90.1 PTH_MD_SR - 140 Italy - 212 Spain 
           - 84.0 Germany 
  
Predictor        Coef     SE Coef          T        P 
Constant      1696.15       58.83      28.83    0.000 
ET_MD_SR       -98.17       22.35      -4.39    0.000 
PTH_MD_S        90.11       17.19       5.24    0.000 
Italy         -140.46       33.25      -4.22    0.000 
Spain         -212.47       47.65      -4.46    0.000 
Germany        -84.03       27.81      -3.02    0.004 
  
S = 75.17       R-Sq = 56.6%     R-Sq(adj) = 50.9% 
  
Analysis of Variance 
  
Source            DF          SS          MS         F        P 
Regression         5      280405       56081      9.92    0.000 
Residual Error    38      214738        5651 
Total             43      495143 
  
Source       DF      Seq SS 
ET_MD_SR      1        8353 
PTH_MD_S      1       94693 
Italy         1       45481 
Spain         1       80270 
Germany       1       51608 
  
Unusual Observations 
Obs   ET_MD_SR       Date         Fit      SE Fit    Residual    St Resid 
  1       2.67     1440.0      1624.2        27.2      -184.2       -2.63R  
  2       2.59     1475.0      1642.4        18.9      -167.4       -2.30R  
  4       2.76     1488.0      1424.8        59.3        63.2        1.37 X 
 11       1.61     1555.0      1568.3        49.7       -13.3       -0.24 X 
 13       4.45     1577.0      1518.7        49.8        58.3        1.04 X 
 42       2.37     1793.0      1619.0        20.5       174.0        2.41R  
  
R denotes an observation with a large standardized residual 
X denotes an observation whose X value gives it large influence. 
  
 
 
  

ET_MD =Equal Temperament Standard, Mean Deviation 
ET_SD  =Equal Temperament Standard, Standard Deviation 
JST_MD=Just Intonation Standard, Mean Deviation 
JST_SD =Just Intonation Standard, Standard Deviation 
PTH_MD=Pythagorean Standard, Mean Deviation 
PTH_SD=Pythagorean Standard, Standard Deviation 
SR after a variable name indicates a square root transformation 

 



The Development of the Equal Temperament Scale 

70 

APPENDIX H -- VARIANCE TESTS ON AVERAGED DATA 
 
Variances Tests on Averaged Data  
 

0 10 20

95% Confidence Intervals for Sigmas

Bartlett's Test

Test Statistic: 1.021

P-Value       : 0.796

Levene's Test

Test Statistic: 0.373

P-Value       : 0.773

Factor Levels

1

2

3

4

Test for Equal Variances for ET_MD

 20100

95% Confidence Intervals for Sigmas

P-Value       : 0.811

Test Statistic: 0.320

Levene's Test

P-Value       : 0.780

Test Statistic: 1.088

Bartlett's Test

Factor Levels

4

3

2

1

Test for Equal Variances for ET_SD

 

0 5 10 15

95% Confidence Intervals for Sigmas

Bartlett's Test

Test Statistic: 7.649

P-Value       : 0.054

Levene's Test

Test Statistic: 2.491

P-Value       : 0.074

Factor Levels

1

2

3

4

Test for Equal Variances for JST_MD

 0 10 20

95% Confidence Intervals for Sigmas

Bartlett's Test

Test Statistic: 5.291

P-Value       : 0.152

Levene's Test

Test Statistic: 1.328

P-Value       : 0.279

Factor Levels

1

2

3

4

Test for Equal Variances for JST_SD

 

0 5 10 15 20 25

95% Confidence Intervals for Sigmas

Bartlett's Test

Test Statistic: 4.834

P-Value       : 0.184

Levene's Test

Test Statistic: 1.985

P-Value       : 0.132

Factor Levels

1

2

3

4

Test for Equal Variances for PTH_MD

 0 10 20 30

95% Confidence Intervals for Sigmas

Bartlett's Test

Test Statistic: 4.603

P-Value       : 0.203

Levene's Test

Test Statistic: 1.557

P-Value       : 0.215

Factor Levels

1

2

3

4

Test for Equal Variances for PTH_SD
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Variances Tests on Transformed Averaged Data (by square root) 
 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

95% Confidence Intervals for Sigmas

Bartlett's Test

Test Statistic: 0.979

P-Value       : 0.806

Levene's Test

Test Statistic: 0.304

P-Value       : 0.822

Factor Levels

1

2

3

4

Test for Equal Variances for sqrtET_MD

 0 1 2 3 4

95% Confidence Intervals for Sigmas

Bartlett's Test

Test Statistic: 0.853

P-Value       : 0.837

Levene's Test

Test Statistic: 0.263

P-Value       : 0.851

Factor Levels

1

2

3

4

Test for Equal Variances for sqrtET_SD

 

0.0 0.5 1.0 1.5 2.0 2.5

95% Confidence Intervals for Sigmas

Bartlett's Test

Test Statistic: 8.009

P-Value       : 0.046

Levene's Test

Test Statistic: 2.742

P-Value       : 0.056

Factor Levels

1

2

3

4

Test for Equal Variances for sqrtJST_MD

 0.0 0.5 1.0 1.5 2.0 2.5

95% Confidence Intervals for Sigmas

Bartlett's Test

Test Statistic: 5.741

P-Value       : 0.125

Levene's Test

Test Statistic: 1.541

P-Value       : 0.219

Factor Levels

1

2

3

4

Test for Equal Variances for sqrtJST_SD

 

0 1 2 3 4 5

95% Confidence Intervals for Sigmas

Bartlett's Test

Test Statistic: 12.194

P-Value       :  0.007

Levene's Test

Test Statistic: 3.582

P-Value       : 0.022

Factor Levels

1

2

3

4

Test for Equal Variances for sqrtPTH_MD

 0 1 2 3 4 5

95% Confidence Intervals for Sigmas

Bartlett's Test

Test Statistic: 13.512

P-Value       :  0.004

Levene's Test

Test Statistic: 2.490

P-Value       : 0.074

Factor Levels

1

2

3

4

Test for Equal Variances for sqrtPTH_SD

 
ET_MD =Equal Temperament Standard, Mean Deviation 
ET_SD  =Equal Temperament Standard, Standard Deviation 
JST_MD=Just Intonation Standard, Mean Deviation 
JST_SD =Just Intonation Standard, Standard Deviation 
PTH_MD=Pythagorean Standard, Mean Deviation 
PTH_SD=Pythagorean Standard, Standard Deviation 
sqrt before a variable name indicates a square root transformation 
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All ANOVA’s tried on averaged data 
  
One-way ANOVA: sqrtET_MD versus Quarters 
  
Analysis of Variance for sqrtET_M 
Source     DF        SS        MS        F        P 
Quarters    3     0.899     0.300     0.54    0.661 
Error      40    22.380     0.559 
Total      43    23.278 
                                   Individual 95% CIs For Mean 
                                   Based on Pooled StDev 
Level       N      Mean     StDev  ------+---------+---------+---------+ 
1           7    2.9714    0.6259        (-------------*--------------)  
2          12    3.2050    0.8484                 (----------*----------)  
3           5    2.8580    0.8482   (---------------*----------------)  
4          20    2.8760    0.6971           (--------*-------)  
                                   ------+---------+---------+---------+ 
Pooled StDev =   0.7480                2.40      2.80      3.20      3.60 
  
  
One-way ANOVA: sqrtET_SD versus Quarters 
  
Analysis of Variance for sqrtET_S 
Source     DF        SS        MS        F        P 
Quarters    3     1.184     0.395     0.54    0.659 
Error      40    29.364     0.734 
Total      43    30.548 
                                   Individual 95% CIs For Mean 
                                   Based on Pooled StDev 
Level       N      Mean     StDev  --+---------+---------+---------+---- 
1           7    3.2871    0.7045       (------------*------------)  
2          12    3.5683    0.9604               (---------*---------)  
3           5    3.1960    0.9523  (---------------*--------------)  
4          20    3.1845    0.8148          (-------*------)  
                                   --+---------+---------+---------+---- 
Pooled StDev =   0.8568            2.50      3.00      3.50      4.00 
  
  
Mood Median Test: JST_MD versus Quarters 
  
Mood median test for JST_MD   
  
Chi-Square = 0.88   DF = 3   P = 0.831 
  
                                        Individual 95.0% CIs 
Quarters   N<=    N>   Median    Q3-Q1  -----+---------+---------+---------+- 
1            4     3     10.0      9.8   (------------+-------------------) 
2            5     7     11.0      3.9               (--+-------) 
3            2     3     10.6      4.3       (---------+------) 
4           11     9     10.1      2.7             (--+---) 
                                        -----+---------+---------+---------+- 
                                           7.0      10.5      14.0      17.5 
Overall median = 10.4 
* NOTE * Levels with < 6 observations have confidence < 95.0% 
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One-way ANOVA: sqrtJST_SD versus Quarters 
  
Analysis of Variance for sqrtJST_ 
Source     DF        SS        MS        F        P 
Quarters    3     1.053     0.351     1.03    0.389 
Error      40    13.598     0.340 
Total      43    14.650 
                                   Individual 95% CIs For Mean 
                                   Based on Pooled StDev 
Level       N      Mean     StDev  --+---------+---------+---------+---- 
1           7    3.9757    0.8480            (----------*-----------)  
2          12    4.1400    0.3579                   (-------*--------)  
3           5    3.6800    0.5956   (------------*------------)  
4          20    3.8300    0.5829             (------*-----)  
                                   --+---------+---------+---------+---- 
Pooled StDev =   0.5831            3.20      3.60      4.00      4.40 
  
  
One-way ANOVA: PTH_MD versus Quarters 
  
Analysis of Variance for PTH_MD   
Source     DF        SS        MS        F        P 
Quarters    3      72.7      24.2     0.68    0.572 
Error      40    1433.6      35.8 
Total      43    1506.3 
                                   Individual 95% CIs For Mean 
                                   Based on Pooled StDev 
Level       N      Mean     StDev  -----+---------+---------+---------+- 
1           7    10.959     8.365   (----------*-----------)  
2          12    14.819     6.947               (--------*--------)  
3           5    14.528     4.101          (------------*-------------)  
4          20    14.034     4.677               (------*------)  
                                   -----+---------+---------+---------+- 
Pooled StDev =    5.987               8.0      12.0      16.0      20.0 
  
  
One-way ANOVA: PTH_SD versus Quarters 
  
Analysis of Variance for PTH_SD   
Source     DF        SS        MS        F        P 
Quarters    3      92.0      30.7     0.61    0.615 
Error      40    2024.9      50.6 
Total      43    2116.9 
                                   Individual 95% CIs For Mean 
                                   Based on Pooled StDev 
Level       N      Mean     StDev  -+---------+---------+---------+----- 
1           7    15.329     9.939   (----------*----------)  
2          12    19.834     8.219              (--------*-------)  
3           5    18.912     5.441        (------------*------------)  
4          20    18.219     5.481             (-----*------)  
                                   -+---------+---------+---------+----- 
Pooled StDev =    7.115          10.0      15.0      20.0      25.0 
  
 
 

ET_MD =Equal Temperament Standard, Mean Deviation 
ET_SD  =Equal Temperament Standard, Standard Deviation 
JST_MD=Just Intonation Standard, Mean Deviation 
JST_SD =Just Intonation Standard, Standard Deviation 
PTH_MD=Pythagorean Standard, Mean Deviation 
PTH_SD=Pythagorean Standard, Standard Deviation 
sqrt before a variable name indicates a square root transformation 
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APPENDIX I -- DISCRIMINANT ANALYSIS ON ORIGINAL DATA  
 
 
Stepwise Discriminant Analysis on Original Data Without Country 
 
 

 

Variables Entered/Removeda,b,c,d

ET_MD_S
R .837 1 3 89.000 5.797 3 89.000 .001

PT_MD_S
R .707 2 3 89.000 5.547 6 176.000 .000

Step
1

2

Entered Statistic df1 df2 df3 Statistic df1 df2 Sig.
Exact F

Wilks' Lambda

At each step, the variable that minimizes the overall Wilks' Lambda is entered.
Maximum number of steps is 12.a. 

Minimum partial F to enter is 3.84.b. 

Maximum partial F to remove is 2.71.c. 

F level, tolerance, or VIN insufficient for further computation.d. 
 

 
Variables in the Analysis

1.000 5.797
.412 10.393 .958
.412 5.364 .837

ET_MD_SR
ET_MD_SR
PT_MD_SR

Step
1
2

Tolerance F to Remove
Wilks'

Lambda

 
 
 

Variables Not in the Analysis

1.000 1.000 5.797 .837
1.000 1.000 5.675 .839
1.000 1.000 .597 .980
1.000 1.000 .907 .970
1.000 1.000 1.308 .958
1.000 1.000 1.770 .944

.011 .011 .480 .823

.688 .688 1.907 .785

.880 .880 2.632 .768

.412 .412 5.364 .707

.331 .331 4.749 .720

.011 .011 .411 .697

.492 .294 2.892 .643

.633 .296 3.021 .640

.034 .034 .265 .701

ET_MD_SR
ET_SD_SR
JS_MD_SR
JS_SD_SR
PT_MD_SR
PT_SD_SR
ET_SD_SR
JS_MD_SR
JS_SD_SR
PT_MD_SR
PT_SD_SR
ET_SD_SR
JS_MD_SR
JS_SD_SR
PT_SD_SR

Step
0

1

2

Tolerance
Min.

Tolerance F to Enter
Wilks'

Lambda
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Wilks' Lambda

1 .837 1 3 89 5.797 3 89.000 1.149E-03
2 .707 2 3 89 5.547 6 176.000 2.738E-05

Step
1
2

Number of
Variables Lambda df1 df2 df3 Statistic df1 df2 Sig.

Exact F

 
 
 
 

 

Standardized Canonical Discriminant Function Coefficients

1.554 -.118
-1.116 1.088

ET_MD_SR
PT_MD_SR

1 2
Function

 
 

Functions at Group Centroids

1.320 -.463
.673 .352

-.630 -8.22E-02
-8.50E-02 1.508E-02

QUARTERS
1.00
2.00
3.00
4.00

1 2
Function

Unstandardized canonical discriminant
functions evaluated at group means  

 
Classification Function Coefficients

1.409 .148 -2.108 -1.153
3.765 5.777 7.006 6.377

-9.521 -12.522 -10.851 -10.950

ET_MD_SR
PT_MD_SR
(Constant)

1.00 2.00 3.00 4.00
QUARTERS

Fisher's linear discriminant functions  
 

Classification Resultsa

3 4 0 1 8
2 10 2 1 15
1 4 18 4 27
5 10 16 12 43

37.5 50.0 .0 12.5 100.0
13.3 66.7 13.3 6.7 100.0
3.7 14.8 66.7 14.8 100.0

11.6 23.3 37.2 27.9 100.0

QUARTERS
1.00
2.00
3.00
4.00
1.00
2.00
3.00
4.00

Count

%

Original
1.00 2.00 3.00 4.00

Predicted Group Membership
Total

46.2% of original grouped cases correctly classified.a. 
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Stepwise Discriminant Analysis on Original Data with Country 
 

Variables Entered/Removeda,b,c,d

ITALY .794 1 3 89.000 7.674 3 89.000 .000
GERMAN
Y .608 2 3 89.000 8.274 6 176.000 .000

SPAIN .484 3 3 89.000 8.190 9 211.886 .000

Step
1
2

3

Entered Statistic df1 df2 df3 Statistic df1 df2 Sig.
Exact F

Statistic df1 df2 Sig.
Approximate F

Wilks' Lambda

At each step, the variable that minimizes the overall Wilks' Lambda is entered.
Maximum number of steps is 26.a. 

Minimum partial F to enter is 3.84.b. 

Maximum partial F to remove is 2.71.c. 

F level, tolerance, or VIN insufficient for further computation.d.  
 

Variables in the Analysis

1.000 7.674
.814 10.229 .821
.814 8.972 .794
.706 15.227 .737
.732 11.276 .672
.842 7.485 .608

ITALY
ITALY
GERMANY
ITALY
GERMANY
SPAIN

Step
1
2

3

Tolerance F to Remove
Wilks'

Lambda
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Variables Not in the Analysis

1.000 1.000 5.797 .837
1.000 1.000 5.675 .839
1.000 1.000 .597 .980
1.000 1.000 .907 .970
1.000 1.000 1.308 .958
1.000 1.000 1.770 .944
1.000 1.000 7.674 .794
1.000 1.000 6.488 .821
1.000 1.000 1.230 .960
1.000 1.000 .380 .987
1.000 1.000 3.101 .905
1.000 1.000 6.912 .811
1.000 1.000 3.354 .898
.949 .949 3.452 .711
.944 .944 3.266 .715
.956 .956 .888 .771
.953 .953 1.876 .747
.858 .858 1.651 .752
.887 .887 1.370 .759
.814 .814 8.972 .608
.984 .984 .898 .771

1.000 1.000 .330 .786
.999 .999 2.693 .728
.999 .999 6.006 .659
.936 .936 5.367 .672
.884 .758 2.998 .551
.863 .744 2.974 .552
.950 .795 .427 .600
.953 .786 1.732 .574
.826 .752 1.625 .576
.857 .768 1.258 .583
.719 .595 2.216 .565
.993 .809 .106 .606
.945 .770 .906 .590
.877 .715 2.174 .566
.842 .706 7.485 .484
.880 .680 2.967 .438
.858 .666 2.980 .438
.949 .689 .418 .477
.937 .671 2.215 .449
.809 .638 1.945 .453
.847 .658 1.289 .463
.653 .490 3.607 .430
.992 .704 .063 .483
.938 .687 .544 .475
.861 .632 1.320 .462

ET_MD_SR
ET_SD_SR
JS_MD_SR
JS_SD_SR
PT_MD_SR
PT_SD_SR
ITALY
GERMANY
FRANCE
RUSSIA
ENGLAND
POLAND
SPAIN
ET_MD_SR
ET_SD_SR
JS_MD_SR
JS_SD_SR
PT_MD_SR
PT_SD_SR
GERMANY
FRANCE
RUSSIA
ENGLAND
POLAND
SPAIN
ET_MD_SR
ET_SD_SR
JS_MD_SR
JS_SD_SR
PT_MD_SR
PT_SD_SR
FRANCE
RUSSIA
ENGLAND
POLAND
SPAIN
ET_MD_SR
ET_SD_SR
JS_MD_SR
JS_SD_SR
PT_MD_SR
PT_SD_SR
FRANCE
RUSSIA
ENGLAND
POLAND

Step
0

1

2

3

Tolerance
Min.

Tolerance F to Enter
Wilks'

Lambda

 
Since all tuning variables were removed, the rest of this test’s results are 
inconsequential to the study. 
 

ET_MD =Equal Temperament Standard, Mean Deviation 
ET_SD  =Equal Temperament Standard, Standard Deviation 
JST_MD=Just Intonation Standard, Mean Deviation 
JST_SD =Just Intonation Standard, Standard Deviation 
PTH_MD=Pythagorean Standard, Mean Deviation 
PTH_SD=Pythagorean Standard, Standard Deviation 
SR after a variable name indicates a square root transformation 
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APPENDIX J -- DISCRIMINANT ANALYSIS ATTEMPT ON AVERAGED DATA  
  
 
 
Stepwise Statistics for Average data 

Variables Entered/Removeda,b,c

At each step, the variable that minimizes the
overall Wilks' Lambda is entered.

Maximum number of steps is 26.a. 

Minimum partial F to enter is 3.84.b. 

Maximum partial F to remove is 2.71.c. 

F level, tolerance, or VIN insufficient for
further computation.

d. 

No variables are qualified for the analysis.e. 
 

Variables in the Analysis
 

Variables Not in the Analysis

1.000 1.000 1.597 .893
1.000 1.000 .479 .965
1.000 1.000 1.755 .884
1.000 1.000 .383 .972
1.000 1.000 2.424 .846
1.000 1.000 .383 .972
1.000 1.000 1.435 .903
1.000 1.000 .624 .955
1.000 1.000 .599 .957
1.000 1.000 .474 .966
1.000 1.000 .950 .934
1.000 1.000 .676 .952
1.000 1.000 .606 .957

ITALY
GERMANY
FRANCE
RUSSIA
ENGLAND
POLAND
SPAIN
ET_MD
ET_SD
JST_MD
JST_SD
PTH_MD
PTH_SD

Step
0

Tolerance
Min.

Tolerance F to Enter
Wilks'

Lambda

 
Wilks' Lambdaa

No variables are qualified for the analysis.a. 
 

  
   
 
 
 
 
 
 
 
Stepwise Statistics for transformed average data 
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Variables Entered/Removeda,b,c

At each step, the variable that minimizes the
overall Wilks' Lambda is entered.

Maximum number of steps is 26.a. 

Minimum partial F to enter is 3.84.b. 

Maximum partial F to remove is 2.71.c. 

F level, tolerance, or VIN insufficient for
further computation.

d. 

No variables are qualified for the analysis.e. 
 

Variables in the Analysis
 

Variables Not in the Analysis

1.000 1.000 .535 .961
1.000 1.000 .538 .961
1.000 1.000 .383 .972
1.000 1.000 1.032 .928
1.000 1.000 1.422 .904
1.000 1.000 1.190 .918
1.000 1.000 1.597 .893
1.000 1.000 .479 .965
1.000 1.000 1.755 .884
1.000 1.000 .383 .972
1.000 1.000 2.424 .846
1.000 1.000 .383 .972
1.000 1.000 1.435 .903

ET_MD_SR
ET_SD_SR
JS_MD_SR
JS_SD_SR
PT_MD_SR
PT_SD_SR
ITALY
GERMANY
FRANCE
RUSSIA
ENGLAND
POLAND
SPAIN

Step
0

Tolerance
Min.

Tolerance F to Enter
Wilks'

Lambda

 
Wilks' Lambdaa

No variables are qualified for the analysis.a. 
 

 
 
 

ET_MD =Equal Temperament Standard, Mean Deviation 
ET_SD  =Equal Temperament Standard, Standard Deviation 
JST_MD=Just Intonation Standard, Mean Deviation 
JST_SD =Just Intonation Standard, Standard Deviation 
PTH_MD=Pythagorean Standard, Mean Deviation 
PTH_SD=Pythagorean Standard, Standard Deviation 
SR after a variable name indicates a square root transformation 
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APPENDIX K -- VARIOUS REPRESENTATIONS OF THE DATA 
  
 
 
Dot plot of mean deviations from Equal Temperament over time 
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Time series plots of individual Well Temperament advocates with more than two tunings published 

  

Actual 
Fits   
Actual 
Fits   
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Time

Yt = 2.81 - 7.57E-02*t
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Linear Trend Model
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Yt = 3.04 - 0.22*t
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1.02563
0.02667
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Bendeler Trend Analysis
Linear Trend Model
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von Wiese Trend Analysis
Linear Trend Model

 
 
 
 
  

ET_MD =Equal Temperament Standard, Mean Deviation 
ET_SD  =Equal Temperament Standard, Standard Deviation 
JST_MD=Just Intonation Standard, Mean Deviation 
JST_SD =Just Intonation Standard, Standard Deviation 
PTH_MD=Pythagorean Standard, Mean Deviation 
PTH_SD=Pythagorean Standard, Standard Deviation 
sqr before a variable name indicates a square root transformation 
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