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ABSTRACT 

 
A mathematical model for analysing the natural frequency of an open-ended 

cylindrical resonator is formulated, simulated and validated using laboratory 

experiments. The Marimba was targeted for application of the findings, because it 

has several such resonators. Of particular interest is the influence of the length and 

radius of the cylinder on its natural frequency, and sensitivity of the natural 

frequency to small changes in either the length or the radius of the cylinder. 

The mathematical model consisted of Helmholtz’s partial differential equation (in 

cylindrical coordinates) coupled with a set of Neumann-type boundary conditions 

prescribed on both ends of the cylinder, and along the axis, and the surface wall of 

the cylinder.  

The finite difference method (FDM) was used to convert the continuous differential 

equation into a corresponding discrete difference equation that was used to generate 

a system of simultaneous linear equations whose solution was the required velocity 

potential. The system was solved using MATLAB software. Both simulation and 

validation of the model, confirmed the researcher’s hypotheses that the length of the 

cylinder has a direct influence on its natural frequency, and that the radius has little, 

if any. 

 Sensitivity analysis carried out by making small changes in the length of the 

cylinder near the optimal length for producing resonance revealed that, the natural 

frequency is very sensitive to small variations in the length of the cylinder and  

insensitive to variations of the radius unless the radius is unreasonably large. 
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CHAPTER ONE 

 INTRODUCTION 

1.1 General Introduction 

Marimba is an idiophone that is sounded by striking wooden bars with mallet 

(Fletcher and Rossing, 1998). Marimba is defined as a pipe percussion instrument 

that produces sound through a vibrating air column (Nederveen, 1998). The name 

originates from Bantu languages where by “rimba” means a note or key, while “Ma” 

is a plural prefix. Generally, Marimba is equivalent to many sound keys. 

A Marimba has three basic attributes, namely, the name itself, the presence of a 

vibrating membrane and the presence of a thin bar of wood as part of the instrument. 

 

 

 

 

 

 

 

Figure 1.1: Picture of a Modern Marimba 
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Marimba resonators have been changing with time, from those made traditionally 

using gourds to the modern ones with metal pipes (usually brass or aluminum). 

Below each marimba bar hangs a resonator whose length is related to the frequency 

produced by the bars.  

The modern Marimba (Figure 1.1) consists of a set of keys made of wooden bars, 

preferably rosewood, mahogany or African padouk, with metal resonator cylinders. 

The bars are struck with mallets to produce musical tones. Directly beneath each 

Marimba bar is a resonator cylinder. The resonator cylinder obeys the physical laws 

for standing waves in a pipe. 

Fletcher and Rossing (1991) point out that, Marimba resonators (Figure 1.1) are 

cylindrical pipes tuned to the fundamental mode of the corresponding bars .The pipes 

are open at the end just below the vibrating bar as well as at the other end. Sound 

wave travels down the pipe and is reflected back at the other open end. 

Consequently, a standing wave is formed by the combination of the sound waves 

traveling in opposite directions. According to the physics of sound, the open ended 

cylinder resonates as air passes through it from the Marimba bar if and only if its 

acoustical length is approximately equal to half of the sound wavelength.  

A Marimba resonator often imposes its resonance frequency on the system, hence the 

resonators are sized for each specific Marimba bar note where the frequencies 

produced by the bars and the resonators are added constructively, thereby causing the 

sound produced to resonate to its maximum amplitude (Rienstra and Hirschberg, 

2004).  
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If a cylindrical air column is open at both ends, antinodes of air displacement (the 

nodes of air pressure) must appear at the ends of the tube for a standing wave to 

occur because air at both ends of the column is relatively free to move. For air in an 

open pipe to vibrate in a standing wave pattern, the two required antinodes have to be 

at the ends of the pipe and a node in the middle of the pipe. This leads to the tube 

length being a multiple of half-wavelengths (i.e., the distance between antinodes will 

always be etc).
2

3λ
orλ,

2

λ
   

Tracey (1969) points out that, Marimba resonators are designed so as to resonate 

with the fundamental frequency. Thus, a resonator’s length is determined by the note 

at which it must resonate. A resonator tube is tuned to a certain note with a 

fundamental frequency by adjusting its length.  

When the open upper end of a cylinder in a Marimba is excited by the harmonic 

vibration from a bar placed immediately above it, the bar vibrates and causes the air 

to vibrate. Sound is caused by tiny variation in air pressure as it vibrates above and 

below the ambient atmospheric pressure that can be detected by some receiver. 

Normally sound pressure amplitudes range from a few micro-pascals to a few 

hundred Pascal that fluctuate around atmospheric pressure  51.01 10 pa . 

This variation in air pressure propagates in the form of longitudinal waves 

throughout the medium (air) at a velocity called the sound speed. The variations of 

pressure oscillate very rapidly in time around the atmospheric pressure and take 

place in the audio-range that lies between 20 and 20,000 cycles per second as 

perceived by the human ear. These tiny variations in air pressure result in a series of 
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high-pressure and low-pressure regions (Figure 1.2). Since the source of the sound 

waves vibrates sinusoidally, the pressure variations are also sinusoidal. 

Coulson (1977) points out that, when two waves of equal wavelength and amplitude 

propagate in opposite directions as a result of interference, the two waves are 

superimposed on each other and the resulting wave is called a standing wave. In a 

standing wave the particles of the medium at certain points do not oscillate. These 

points are called nodes. At certain points, called antinodes the particles of the 

medium have maximum amplitude of oscillation. 

 

Figure 1.2: Pressure Variation in a Tube 
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The study of sound wave amplitude, frequency, wavelength, and velocity can be 

explained by considering the sketch in Figure 1.3. 

 
Figure 1.3: Propagation of Sound Waves in Air 

Sound waves that consist only of a pure tone are characterized by the amplitude of 

pressure changes, which can be described by the maximum pressure or the root-

mean-square amplitude, and is expressed in Pascal (Pa). Root-mean-square means 

the instantaneous sound pressures (which can be positive or negative) are squared 

averaged and the square root of the average is taken.  

(i) The wavelength , is the distance travelled by the wave during one cycle. 

(ii) The frequency f , is the number of cycles per unit time and is expressed in 

Hertz (Hz). 

The sound produced by a Marimba key is soft, depending on the type of wood used. 

The manufacturer adds something that will amplify the sound called a resonator 

(Vanessa, 2005). Musically, the Marimba resonator is important because it directly 

influences the overall sound quality of a Marimba system. The vibrating Marimba 
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bars do not radiate sound very efficiently; hence in order to amplify the sound, the 

resonators are mounted underneath the bars (Fletcher and Rossing, 1991). 

This study aims at analyzing the influence of the natural frequencies of a cylinder 

open at both ends, specifically Marimba resonators, on the overall sound quality of a 

Marimba. This is done by developing a mathematical model of resonance in a 

cylinder that is open at both ends. 

The mathematical model for analyzing the natural frequencies of the open ended 

cylinder as applied to Marimba resonator is derived using the theory of linear 

acoustic wave equation, which is reduced to Helmholtz equation and solved 

numerically using the finite difference method (FDM). 

Due to the complexity of obtaining an analytical solution and the nature of the 

problem domain, a numerical method is used to solve the mathematical model. The 

finite difference method is chosen to approximate the solution of the domain function 

because it is simple to implement over a domain with regular geometry.   

4.4 Statement of the Problem 

The resonator of a Marimba is a three dimensional circular cylinder with uniform 

cross-section area tuned to the fundamental mode of its corresponding bar. Fletcher 

and Rossing (1991) points out that, the purpose of the resonator is to amplify the 

sound of the entire Marimba system. 

Few studies have been carried on mathematical modelling of resonance in an open-

ended cylinder. This study aims at analyzing the sensitivity of natural frequencies to 

small variations in the dimensions (length, radius) of a cylinder open at both ends, as 
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applied to the Marimba resonator. This is achieved by developing a mathematical 

model of resonance in a cylinder that is open at both ends using the finite difference 

method as applied to the resonator of a Marimba.  

1.2 Research Objectives 

The general objective of this study was to develop and analyses a mathematical 

model of resonance in a cylinder open at both ends using the finite difference 

method, and apply it to the Marimba resonator. This was achieved by targeting the 

following specific objectives: 

(i) To develop a mathematical model for the movement of air in a cylinder open 

at both ends with application to the Marimba resonator. 

(ii) To determine the sensitivity of the natural frequencies to small variations in 

the dimensions (length, radius) of the cylindrical resonator. 

(iii) To validate the modal developed. 

 

1.3 Significance of the Study 

The following are the aspects that make this study significant: 

(i) Contribution to Knowledge 

This study will contribute a mathematical model for analyzing the movement of air 

in a Marimba resonator.  
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(ii) Contribution to Policy Makers 

The resulting established relationship between resonant (natural) frequencies of 

cylinders and dimensions of the cylinders is useful to Marimba and idiophone 

manufacturers in promoting the use of such musical instrument. 

(iii) Contribution to Practitioners 

Stakeholders interested in studying resonance in open ended cylinders of different 

dimensions may use the finding in this dissertation as a basis for further studies 

1.4 Scope and Limitation of the Study 

This study focuses only on resonance in an open ended cylinder, caused by 

sinusoidal vibrations of air of a struck Marimba bar as a source of sound. The 

variation in air pressure in the cylinder propagates as longitudinal waves through the 

medium.  

1.5 Organization of the Dissertation 

This dissertation has five main chapters: Introduction; Literature Review; 

Methodology (formulation of a mathematical model of resonance in open-ended 

cylinder); Numerical simulation of the model; Discussion, Conclusion, 

Recommendations and future work. 

The first chapter gives an overview of the Marimba resonator together with the issues 

associated with resonance in open-ended cylinders in relation to the theory and laws 

that govern standing waves. The second chapter reviews the literature on the subject 

and highlight on already established facts regarding resonance in open ended 

cylinders as related to this research. A lot of efforts are made to match the literature 
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with the current problem (i.e, the effects of small variations in the dimensions 

(length, radius) of an open ended cylinder to its natural frequencies). 

Chapter three covers the method used in this study; it describes the mathematical 

model of resonance in an open-ended cylinder. 

Chapter four focuses on numerical simulation of the model. The numerical and 

laboratory experimental work is explained, including, determination of the 

relationship between the natural frequency and the dimensions of an open ended 

cylinder. 

The last chapter summarizes the findings of this study. It reveals that, the small 

variations of the length of an open-ended cylinder have significant effect on the 

natural frequency of the Marimba resonator and hence on its musical quality. 

Moreover, it was also established that, small variations of the radius of the cylinder 

does not seriously affect its natural frequency unless it becomes very large.  
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CHAPTER TWO 

 LITERATURE REVIEW 

The natural sound produced by a marimba key is soft, depending on the type of wood 

that has been used, so the maker adds something that will make that sound louder 

called a resonator. Some African cultures use gourds or animal horns or even banana 

stems to amplify the sound (Vanessa, 2005). 

Fletcher and Rossing (1998) emphasized that, vibrating bars do not radiate sound 

very efficiently which causes Marimba builders to mount resonators underneath the 

bars of marimba in order to amplify the radiation of sound from bars. 

The most common Marimba resonator is a straight cylindrical tube made of bamboo, 

metal, or Poly Vinyl Chloride (PVC)-cylinders (Forster, 2010). The straight 

cylindrical resonator is used in steady of the cavity resonator because its mathematics 

is not far more complicated and that, the length and frequency equations for 

cylindrical resonators are easy to understand. When the Marimbas bar is vibrating 

just below the open end of a cylinder, sound waves are sent into the column of air 

inside the cylinder whereby they reflect off at the closed end of the cylinder and 

travel back to the opening (Fletcher and Rossing, 1991). 

Nederveen (1998) show that, reflected waves combine with new waves coming from 

the bar which is being struck. Resonance occurs if the reflected waves and the new 

waves are in phase with each other (constructive interference) to create a standing 

wave (Boelkes and Hoffmann, 2011). The amplitudes of the reflected and new waves 

combine and a louder sound with a definite frequency (note) is heard by which serve 
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the work of combining the tones with the struck bars and amplify them.  The column 

of air vibrates at its natural or resonant frequency to produce the sound. 

Sound waves are longitudinal waves where the speed of sound in air varies from 

about 330m/s to 340 m/s depending upon the density, pressure and temperature of 

the air. The theoretical value for the speed of sound in air can be found using the 

equation: 

    .                                              (2.1) 

 

Where T
c 
is the air temperature in °C and the speed of sound (c) will be given in m/s  

The standing wave in an open tube has displacement antinodes and pressure nodes at 

the open ends of the tube (Fletcher and Rossing, 1998). The condition for resonance 

and frequencies at which standing waves is supported in a tube of length L is given 

by   

   ,   n=1,2,3,...                                                                                  (2.2) 

So that                            

,  n=1,2,3,...                                                                                   (2.3)  

Beranek (1988) point out that, the wave equation which describes the behavior of 

sound waves propagating in any acoustic medium results from the combination of 

several laws of physics, namely Newton’s second law of motion, the gas law and the 

laws of conservation of mass. 
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(Fletcher and Rossing, 1991) point out that, the wave equation can be derived from 

two fundamental laws of the theory of continuum mechanics. These two are the 

principle of conservation of mass and the principle of balance of momentum. 

Moreover, Beranek (1988) emphasised that, the wave equation can be derived 

through the combinations of established equations expressing Newton’s law of 

motion (the Euler`s equation as the balance of momentum), the gas laws and the laws 

of conservation of mass. Sound waves in a fluid (air) are oscillatory disturbances, 

generated, for example, by a vibrating surface. Such disturbances manifest 

themselves by pressure fluctuations, which is what we can hear, but also by similar 

perturbations of the temperature and the density, and by particles moving back and 

forth. 

Mendonca (2007) in his thesis states that, if the acoustic pressure is assumed to be 

harmonic then the wave equation simplifies to the Helmholtz equation which serves 

as the starting point for the finite difference model formulation. 

The time-dependent wave equation governing the acoustic field can be reduced to the 

Helmholtz equation when harmonic solutions are considered (Beranek and Vér,  

2005). Moreover, they emphasized that, the acoustic field is assumed to be present in 

the domain of a homogeneous isotropic fluid whatever the shape and nature of the 

domain, the acoustic field is taken to be governed by the linear wave equation where 

the differential equation for pressure field associated with acoustic vibrations in two 

dimensional rooms with rigid boundaries is given by 

                                                                                                      (2.4) 

 Equation (2.4) is the time-independent partial differential equation called Helmholtz 
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Marderness (2012) points out that, the Helmholtz equation (2.4) is a special case of 

the wave equation which is only a function of position, as opposed to a function of 

position and time. This equation describes standing waves within a fluid volume. 
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CHAPTER THREE 

 FORMULATION OF A MATHEMATICAL MODEL OF 

RESONANCE IN AN OPEN-ENDED CYLINDERS 

3.1 Properties of Sound Waves 

A sound wave is characterized by its frequency f  measured in Hertz ; wavelength 

  measured in meters; period T  measured in seconds ; sound propagating speed c  

measured in metres per second; and by its amplitude, which is a nonnegative scalar 

measure of the wave’s maximum oscillation (or maximum disturbance) in the 

medium during a single wave oscillation. 

 

The period T is the time taken for one oscillation of a wave to pass a fixed point. It is 

related to frequency by: 

1
T

f
  .          (3.1)  

The speed of sound propagation, the frequency and the wavelength are related 

through the equation 

c f  .         (3.2) 

In general, the quantities frequency f , wavelength   , the speed of sound c  and 

period T  are related through the equation: 

1 2c
f kc k

T c

 

 
      .              (3.3) 

where k and   denote  the wave number and angular frequency, respectively . 
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3.2 Derivation of the Equations Governing Resonance in an Open 

Ended Cylinder 

In physics, resonance is the tendency of a system to oscillate with greater amplitude 

at some frequencies than at others. Frequencies at which the response amplitude is a 

relative maximum are known as the system's resonant frequencies. The physical laws 

of acoustic standing waves in a cylinder are used to derive a general formula for 

calculating resonant frequencies of a cylinder that is opened at both ends.  

 

Consider a cylinder of length L  open at both ends. A standing wave in such a 

cylinder must have pressure nodes (displacement antinodes) at both ends. If there are 

no additional pressure nodes in the middle of the cylinder, the distance between the 

two nodes at the cylinder ends is half the wavelength (Fletcher and Rossing, 1991). 

This leads to the equation 

 .           (3.4)  

This equation represents the wavelength 1  at the fundamental harmonic defined by 

the equation: 

.          (3.5) 

so that, a cylinder with n harmonics will have a wavelength  

,  n=1,2,3,...         (3.6) 

The simplest analytic formula, which determines the eigenfrequencies of an air 

column resonating in an open ended cylinder is given by the equation; 

         (3.7)  
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where   is the frequency of the thn   eigenmode, c is speed of sound propagation 

in (m/s) and L denotes a length of cylinder measured in metres. 

when n=1 the equation (3.7) becomes a fundamental frequency 
1f  given by; 

              (3.8) 

 Equation (3.7) can be re-arranged to give the physical length of a cylinder needed to 

resonate at a certain frequency  

...,3,2,1,
2











 n

f

c
nL

n

                                           (3.9)  

Marimba resonators are designed to resonate with the fundamental frequency 1f  

corresponding to n equal to 1, in which case 

12

c
L

f
 .            (3.10) 

Thus, a resonator’s length is determined by the note it is intended to resonate; and a 

resonator cylinder is tuned to a certain note with a fundamental frequency  by 

adjusting its length L as per equation (3.10). 

3.3 The Function Used to Model Resonance in an Open-Ended Cylinder 

The three functions which can be used to model resonance in open ended cylinder 

are; 

(i) Particle velocity. 

(ii) Velocity potential. 

(iii) Acoustic pressure. 
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3.3.1 Acoustic Pressure 

This is the pressure caused by the vibrations of air when the Marimba bar is struck. It 

is given by the equation; 

 , , , (x, y,z) i tp x y z t i u e        (3.11) 

where p , ,  and u  are pressure, angular frequency,  density of air and velocity 

potential respectively. 

 

3.3.2 Particle Velocity 

The particle velocity  , , ,V x y z t  is the physical speed of a parcel of air as it 

oscillates in the direction where the sound wave is propagating. The particles of the 

medium oscillate around their original position with a relatively small particle 

velocity. The Particle velocity is given through the equation; 

 .                                                 (3.12) 

where v  denotes particle velocity amplitude 

3.3.3 Velocity potential 

The velocity potential  , , ,x y z t  is a scalar function whose gradient is equal to the 

particle velocity of the fluid (air) at that point. Velocity potential is given by the 

equation; 

   , , , , , i tx y z t u x y z e    .                                          (3.13) 

where  , ,u x y z  is the velocity potential  amplitude due to pressure variations. 

 

   , , , , , i tV x y z t v x y z e  
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3.4 Relationship between Velocity Potential and Particle Velocity 

 If a fluid is frictionless (non-viscosity), incompressible and adiabatic, its particle 

velocity as a function of position is described by a velocity potential given by the 

equation: 

   , , , ,u x y z v x y z   .                          (3.14) 

3.5 Theoretical Basis 

3.5.1 The Wave Equation  

Kirkup (2007) points out that, whatever the shape and nature of the problem domain, 

the acoustic field is taken to be governed by the standard linear wave equation which 

in terms of the velocity potential is given by 

   
2

2 2

2
, , , t , , , tx y z c x y z

t
 


 


.                                                 (3.15) 

Equation (3.12) can be reduced to the well known Helmholtz equation, which greatly 

simplifies the complexity of the problem and serves as the starting point for the finite 

difference model formulation (Kirkup, 2007). 

3.5.2 The Helmholtz Equation 

The model is based on the theory of the Helmholtz equation. The Helmholtz equation 

is a special case of the wave equation which is used to describe stationary waves 

within a fluid volume. 

3.6 Derivation of Helmholtz Equation from the Wave Equation 

The Helmholtz equation is a special case of the wave equation which is only a 

function of position, as opposed to a function of position and time. The Helmholtz 
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Equation describes stationary waves within a fluid volume. The Helmholtz equation 

is obtained from the wave equation (3.15) by assuming a solution of the form in 

(3.16)  

     2, , , Re , , , 1i tx y z t e u x y z i    .   (3.16) 

where  , ,u x y z denotes some complex valued scalar function while Re means that 

the real part is taken, because  , , ,x y z t is a complex valued function. 

Differentiating Equation (3.16) with respect to time twice yields 

 
      

2

2

2

, , ,
, , , ,i t i t

x y z t
i i u x y z e u x y z e

t

 


   


    


.    (3.17) 

Substituting Equations (3.17) and (3.16) into Equation (3.15) and re-arranging it 

yields; 

2
2

2
0i t i tue ue

c

     .                                                      (3.18) 

If the exponential time variable 
i te 

 is cancelled, and using the definition of wave 

number (3.3) gives the Helmholtz equation 

   2 2, , , , 0u x y z k u x y z   .      (3.19) 

3.7 Helmholtz’s Equation in Cylindrical Coordinates 

Marimba resonators are cylindrical in their design. It is therefore convenient to 

express the underlying Helmholtz equation (3.19) in cylindrical coordinates. 

Cylindrical coordinates ),,( zr   are related to the Cartesian coordinates ),,( zyx  by 

the equations 
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zzryrx  ,sin,cos  . 

Transformation of the Helmholtz equation 0),,(),,(2  zyxkuzyxu  essentially 

implies transforming the equation 
2

2

2

2

2

2
2 ),,(

z

z

y

u

x

u
zyxu














  into a 

corresponding expression involving cylindrical coordinates. This is achieved by 

finding differential operators involving the cylindrical coordinates that correspond to 

the cartesian differential operators are 
yx 






and .  

By applying the chain rule for differentiation one finds 

























































y

u

y

r

r

u

y

u

x

u

x

r

r

u

x

u








.                                                                                (3.20) 

In order to obtain expressions for the terms  
yy

r

xx

r















 
,and,   that appear 

in equation (3.19) one first differentiates partially the transformation equations 

cosrx   and sinry   to get 

   

 















































0cossinsin)(

1sincoscos

x
r

x

r
r

x
y

x

x
r

x

r
r

x
x

x







.                                            (3.21) 

and 

   

 

















































1cossinsin)(

0sincoscos

y
r

y

r
r

y
y

y

y
r

y

r
r

y
x

y







   .                                               (3.22) 
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Equations (3.20) and (3.21) are a pair of simultaneous linear equations 

























 

0

1

cossin

sincos

x

xr

r

r




,   and 





























 

1

0

cossin

sincos

y

yr

r

r




. 

whose solutions are readily found to be 

 
ryy

r

rxx

r 





cos
,sin,

sin
,cos 



















.                                       (3.23) 

Substituting these results into equation (3.19) leads to 



















































u

rr

u

y

u

u

rr

u

x

u

cos
sin

sin
cos

 .                 (3.24) 

Equation (3.23) is a pair of equations, each expressing one of the two first order 

partial derivatives of u  with respect to the cartesian coordinates yx,  in terms of first 

order partial derivatives of u  with respect to the cylindrical coordinates ,r . To 

express 
2

2

2

2

,
y

u

x

u








 in cylindrical coordinates one starts by noting that 


















































u

rr

u

xx

u

xx

u sin
cos

2

2

 .                     (3.25) 


















































u

rr

u

yy

u

yy

u cos
sin

2

2

.                      (3.26) 

The differential operators 
yx 






,  which appear in these equations are obtained by 

removing the function u  from each of the pair of equations in (3.24). This gives 
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

















































rry

rrx

cos
sin

sin
cos

 . 

Substituting these operators into (3.24) and (3.25) leads to the results 




































































u

rr

u

rrx

u

xx

u sin
cos

sin
cos

2

2

 

        
2
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2

22

2

2

22

22

2
2

 


































u

r
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r

u

r

s

r

u

r

scu

r

sc

r

u
c .                (3.27) 


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





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r

u
s  .              (3.28) 

Where for simplicity’s sake the abbreviations sins  and cosc  have been 

used. Finally, adding equations (3.26) and (3.27), and from the trigonometric identity

1cossin 22   , one gets
2

2

22

2

2

2

2

2 11




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


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
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


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

 u
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u
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u
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u
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u
. 

With this result, the equivalence of Helmholtz’s equation  

0),,(
),,(),,(),,(
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2

2

2

2
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
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
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 . 

in cylindrical coordinates is 

0),,(
),,(),,(1),,(1),,(

2

2

2

2

22
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




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
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zruzru
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zru



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
.          (3.29) 
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In the case of the cylindrical Marimba resonator the function u  depends only on the 

distance r  from the axis of symmetry and on the value of z  but is independent of the 

angle .  This implies that the term 
2

2

u






 is identically zero and hence equation (3.29) 

reduces to 

2 2
2

2 2

( , ) 1 ( , ) ( , )
( , ) 0

u r z u r z u r z
k u r z

r r r z

  
   

  
.                           (3.30) 

Fletcher et al., (2005) show that, since it is assumed that there is no angular variation 

around the pipe, the coordinate θ can be dropped and therefore when the Helmholtz 

equation (3.19) is expressed in cylindrical coordinates  (3.31), then  reduced 

to a two dimensional functional , which is vector of the two variables r and z.  

2 2
2

2 2

( , ) 1 ( , ) ( , )
( , ) 0

u r z u r z u r z
k u r z

r r r z

  
   

  
, 0 ,0r R z Z    .            (3.31)  

3.8 The Numerical Model 

For an open ended cylinder, the acoustic modal characteristics (natural or resonant 

frequencies, eigenmode shapes, etc.) are determined by solving numerically the 

Helmholtz equation (3.31) subject to appropriate boundary conditions.  Since the 

open end boundaries are parallel, the modal characteristics in the axial direction can 

be found, and the problem domain can be viewed as a rectangular region

0 ,0z Z r R    . Thus, a numerical method based either on finite differences or 

the finite element may be used to solve this boundary value problem. In this 

dissertation, the finite difference method is used because it is relatively straight 

forward to derive, simple to implement and is sufficiently accurate on a rectangular 
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domain compared to the finite element method. The finite difference method is a 

numerical technique which converts the underlying differential equation to an 

approximate finite difference equation by replacing partial derivatives with 

corresponding finite difference quotients.  

 

3.8.1 Discretization of the Helmholtz Equation Using the FDM 

Inside the open-ended cylinder (Figure 3.2), the volume is bounded by the two 

opposite parallel cross- section surfaces. For the resulting cross-sectional problem, 

half of the cylinder cross-section will be considered since it is symmetrical about the 

axis of the cylinder. The problem is then reduced to solving the two dimensional 

Helmholtz equation ( 3.34) over a rectangular plane surface 0ABC (Figure 3.1). 

 

 

 

    

 

 

 

 

 

Figure 3. 1: The Problem Domain 
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The illustration of the problem domain above Figure 3.2 can be simplified to Figure 

3.3 where the three point central difference formula was applied. 

 

 

 

 

 

 

 

 

Figure 3. 2: Computational Grid OABC of rz-Rectangular Plane 

When we apply the three point central difference formula to Figure 3.3, yields the 

finite difference equations (3.35) up to (3.38). 

 

Note:  is a pressure of air at the coordinates  so that the Finite 

difference equations becomes; 
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 1, 1, 2(r , z )
2
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i j r
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u uu
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r h

  
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  
.      (3.33) 
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   
2

, 1 , , 1 2

2 2

2u
,

i j i j i j

i j z

Z

u uu
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  
.     (3.35)  

Each term in the Helmholtz equation (3.31) is approximated by an appropriate finite 

difference quotient to lead to a corresponding finite difference equation. At any point

  where  in the discretized 

problem domain (Figure 3.2) with nr =16 nodes and nz =20 nodes  

we have 

2 2

2

2 2

( , ) ( , ) ( , )1
( , ) 0

i j i j i j

i j

u r z u r z u r z
k u r z

r r r z

  
   
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.                     (3.36) 

We use second order central difference quotients to approximate both first and 

second order partial derivatives and get  

1, , 1, 1, 1, , 1 , , 1 2

,2 2

2 21
0

2

i j i j i j i j i j i j i j i j
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r i r z

u u u u u u u u
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         
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.   (3.37) 

Equation (3.47) is simplified to give a finite difference model for the Helmholtz 

equation ; 

2
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        

.  (3.38) 
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If we let 
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equation ( 3.38) becomes 

1, , 1, , 1 , 1 0i i j i j i i j i j i ja u g u c u bu d u        .                 (3.39) 

  

Figure 3. 3: Computational Molecule at Interior Nodes 

3.8.2 Boundary Condition along the Axis of the Cylinder  

The term
1 u

r r




 in the Helmholtz equation (3.31) is discontinuous at .0r  However, 

because 
u

= 0
r




 at r = 0  (line of symmetry), we can apply L´Hopital`s rule 

   
2

lim lim " "

0 0 2

1
0, 0r r

u u
u z u

r r r
 

   
    

    
.
                 (3.40) 
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b
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,i j 1,i j1,i j

, 1i j 

, 1i j 
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Therefore at r  the term becomes 
2

2
0

u

r





 thus, the boundary conditions which 

models the axis of the cylinder are 

2

2
0

u

r





 and 0

u

r





, which in terms of finite 

differences becomes 

1, , 1,2 0i j i j i ju u u    .                                              (3.41) 

 and  1, 1, 0i j i ju u   .                                          (3.42)  

Equations (3.41,  3.42  and  3.39) together imply 

 , 1, , 1 , 1 0i j i i i j i j i jgu a c u bu du       .                       (3.43) 

For any point  ,i jr z  on the axis the equation (3.43) is used to model the symmetry 

axis of the cylinder.  

 

 

 

 

 

 

Figure 3. 4: Computational Molecule along the Symmetry Axis 
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3.8.3  Boundary Condition at the Cylinder Wall 

Consider the relationship between particle velocity and velocity potential from 

equation ( 3.14)  

0
u

u v u n v n
n


       


    .    (3.44) 

where v  is the particle velocity and  is the unit vector normal to the curved surface 

of the cylinder. The normal derivative 
u

n




 is equal zero because the particle velocity 

has no component in the normal direction to the fixed surface of the cylinder. 

0 0,
u u

n r

 
  

 
so that  

1, 1,

1, 1,0, 0
2

i j i j

i j i j

r

u uu
u u

r h

 

 

 
     

  
.     (3.45) 

Equation (3.45) implies 1, 1,i j i ju u    

Substituting this result into the general equation (3.39) we get 

  1, , , 1 , 1 0i j i j i j i j i ja c u gu bu du        .                 (3.46) 

Therefore, the equation (3.46) is used to models the particle velocity at the boundary 

of the cylinder. 

 

 

 

Figure 3. 5: Computational Molecule along the Hard Wall Cylinder Boundary 
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3.8.4  Boundary Condition on the Open Top Surface of the Cylinder  

The boundary condition on the  open top surface of the cylinder just  below the 

Marimba bar is that, the air vibrates with the constant velocity 
0v  of the struck 

wooden bar with a frequency of middle C. Considering the relationship between 

velocity potential u  and particle velocity v  from equation( 3.14) , the boundary 

condition is modeled by :- 

0 0, ,
u u

u v u n v n v v
n z

 
         

 
    .      (3.48)                                                                                                      

Where n  denotes a unit normal vector and 0v  is the magnitude of air velocity 

 In terms of finite difference equation, we get 

, 1 , 1

0 , 1 , 1 02
2

i j i j

i j i j z

z

u uu
v u u h v

z h

 

 

 
     

  
.   (3.49) 

Substitute this into equation (3.39) leads to 

 1, , 1, , 1 02i i j i j i i j i j za u gu c u b d u h v       .                      (3.50)  

The equation (3.50) is used to model the solution across the top surface of the 

cylinder. 

 

 

 

Figure 3.6: Computational Molecule along the Top Cylinder Boundary 
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3.8.5  Boundary Condition on the Open Bottom Surface of the Cylinder 

The boundary condition on the open bottom surface of the cylinder is obtained by 

noting that, when sound reaches the bottom from the top of the cylinder, the pressure 

is just the ambient pressure and the sound pressure is gradually dying down to zero. 

Since the acoustic pressure is zero, then the velocity potential becomes zero 

automatically.   

, 0 0, 0
u u

u v u n v n
n z

 
          

 
    . (3.51) 

The equation (3.40) in terms of finite difference becomes: 

, 1 , 1

, 1 , 10 0
2

i j i j

i j i j

z

u uu
u u

z h

 

 

 
     

  
.     (3.52)  

Substituting
, 1i ju 

 for , 1i ju   in equation (3.39) leads to 

0)(
1,,1,,1 
 jijiijijii udbucguua .                            (3.53)  

The equation (3.53) is used to model the boundary condition on the open bottom 

surface of the cylinder. 

 

 

 

 

Figure 3. 7: Computational Molecule along the Bottom Cylinder Boundary 
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3.9 Forming the System of Linear Equations  

The MATLAB Mathematical software developed (Appendix B) was used to generate 

the system of linear equation; 

           (3.54) 

where   is a 320 by 1 column vector  whose components are containing the 

pressure at interior and boundary points,   is the 320 by 320 matrix whose 

elements are the coefficients multiplying values of the pressure in the corresponding 

Helmholtz difference equation (3.39). The right hand side is the 320 by 1 column 

vector   containing the specified values of pressure at the boundary of the domain. 

The system of equation (3.54) is solved by an iterative method using the developed 

MATLAB codes (Appendix B).  
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CHAPTER FOUR 

 MODEL SIMULATIONS 

4.1 Analysis of Model Results 

The finite difference method was used to approximate the solution of the Helmholtz 

equation (3.31) subject to the specified boundary conditions. The solution was a set 

of approximate values of the acoustic modal characteristics (natural frequencies, 

eigenmode shapes, etc.) of an open ended cylinder. MATLAB codes were written to 

determine the natural frequencies and the eigenmode shapes (see appendix B). 

Simulation of the model was done using different open ended cylinder lengths and 

radii. Resonance for a chosen frequency, say middle C (260 Hz) was simulated by 

varying the value of the length in the MATLAB codes and fixing several chosen 

radius (0.02m, 0.04m and 0.05m). The model results exact half cycle eigenmode 

shape only at optimal resonant length as can be seen in Figure. 4.1. Any tiny 

variations in the length of the cylinder in MATLAB codes near the optimal resonant 

length change the eigenmode shape for producing resonance (Table 4.1). A similar 

test carried out by varying the radius of the cylinder from MATLAB codes, where 

the model results exact half cycle eigenmode shape as it can be seen in  Figure 4.5 

and  4.6  unless the radius is unreasonably large (Figure 4.7). 



34 

 

Figure 4.1: Eigenmode Shape at Optimal Resonant Length (Half-Cycle) 

 Table 4.1: Summary of the Model Data Results 

 

 

 
MODEL  RESULTS 

 RADIUS (M) 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 

LENGTH(M) 0.55 0.60 0.65 0.70 

NATURAL 

FREQUENCY(HZ) 

260 260 260 260 

EIGENMODE SHAPE 

NOT 

A HALF-CYCLE 

NOT 

A  HALF-CYCLE 
HALF-CYCLE 

NOT 

A HALF-CYCLE 

 

 
 

4.2 Analysis of Experimental Results 

4.2.1 PVC-Cylinders  

 PVC cylinders were used for the resonators because they are light, inexpensive, and 

easily available. Two open ended PVC-cylinders of different radii were used to test 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.05

-100

0

100

200

300

400

500

radial direction(in metres)

 

down the cylinder (in metres)

EIGENMODE SHAPE WHEN CYLINDER LENGTH IS O.65 METRES

 

a
c
o
u
s
ti
c
 p

re
s
s
u
re

 (
 i
n
 P

a
s
c
a
ls

) 

0

50

100

150

200

250

300

350

400

Pressure in Pascals



35 

the validity of the model. A vernier caliper and meter ruler were used to obtain the 

dimensions (radius and length) of the two PVC- cylinders.  

4.2.2 Experimental Set Up 

In generally, resonance in an open ended cylinder is difficult to demonstrate using a 

tuning fork practice due to the instruments’ low-intensity resonance. To overcome 

this problem, a speaker driven by a signal generator was used. The set-up used 

demonstrated resonance for a chosen frequency (middle C of 260 Hz) by changing 

the dimensions (length and radius) of the open ended cylinder. Two PVC cylinders 

of different size were chosen such that one could slide inside the other so as to 

demonstrate their natural frequency. 

4.2.3 The Instruments Used in Experiment to Demonstrate Resonance in 

Cylinders. 

In order to demonstrate the resonance in open ended cylinder (Figure 4.1) the 

instruments below were used.  

(i) Signal generator (0.09Hz-110KHz), 

(ii) The Oscilloscope (1Hz-25Hz), 

(iii) The loud speaker of 6 inch producing full audible range of 20 Hz to20 KHz, 

(iv) The small speaker (sensor) of a diameter of 4 inches with a range of 0 Hz to 

20 KHz, used as a microphone, 

(v) The pre-amplifier (40db) , 

(vi) Two sets of PVC cylinders of different radius were used. 
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Figure 4.2: Photograph of an Experimental Set up (UDSM). 

 

Table 4.2: Summary of the Experimental Data Results from Appendix A. 

 

 

 
EXPERIMENTAL   RESULTS 

NATURAL 

FREQUENY 

(HZ) 

  RADIUS (M) 

LENGTH 

 

AMPLITUDE 

(VOLTS) 

 

LENGTH 
EFFECTIVE LENGTH (Le) 

Le=L+(0.62*2r) 

260 0.04 
0.55 0.5996 0.76 

0.59 0.63 0.8 

0.66 0.70 0.63 

260 0.05 
0.55 0.61 0.84 

0.57 0.63 0.9 

0.66 0.71 0.46 
 

4.3 Model Validation 

For the purpose of validating the model, simulations were done to compare the 

model results and the laboratory experimental work results as summarized in Table 

4.3 
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Table 4.3: Model versus Laboratory Experimental Data Results  

 
RADIUS(M) r=0.04 r=0.05 

RESULTS 

M
O

D
E

L
 

EXPERIMENTAL 

M
O

D
E

L
 

EXPERIMENTAL 

RESONANT 

LENGTH(M) 

L L 

EFFECTIVE 

LENGTH(Le) 

Le=L+0.62*2r 

L L 

EFFECTIVE 

LENGTH(Le) 

Le=L2+0.62*2r 

0.65 0.59 0.63 0.65 0.57 0.63 

% error between 

model and 

experimental 

results 

2% 2% 

 

4.4 Sensitivity Analysis   

In this section the general relation between the setting down of the fundamental 

natural frequency (260 Hz) with respect to the dimensions parameters (length and 

radius) of an open ended cylinder as determined by using the mathematical model 

developed and experimental work performed, was analysed (Table 4.1). 

4.4.1 Effects of Small Changes in the Length to the Natural Frequency of the 

Resonator 

 Small changes in length from the optimal resonant length cause the changes on the 

natural frequency. This effect is revealed through the model results (Figure 4.2 and 

4.4), which does not give an exact half cycle eigenmode shape. Therefore, effects of 

a small changes in the length of the cylinder resonator has a direct impact on its 

natural frequency, and that, in fact, the natural frequency is very sensitive to small 

variations about its optimal resonant length. 
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Figure 4.3: Eigenmode Shape when the  Cylinder Length is 0.60 m 

 

 

Figure 4.4: Eigenmode Shape When the Cylinder  Length is 0.70 m 
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4.4.2 Effects of Small Changes in the Radius to the Natural Frequency of the 

Resonator 

The model results reveal that, using different radii (say, 0.02, 0.04 and 0.05), unlike 

in the case of the length, the natural frequency of the cylinder resonator is not only 

independent from but also insensitive to variations in its radius (Figure 4.5 and 4.6), 

unless its radius is very large (Figure 4.7). 

 

Figure 4.5: Eigenmode Shape When the Cylinder Radius is 0.02 m 
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Figure 4.6: Eigenmode Shape When the Cylinder Radius is 0.05 m 
 

 

Figure 4.7: Eigenmode Shape When the Cylinder Radius is too Large. 
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CHAPTER FIVE 

DISCUSSION, CONCLUSION, RECOMMENDATIONS AND 

FUTURE WORK 

5.1 Discussion 

This research set out to formulate a mathematical model for resonance in an open-

ended cylinder. The aim was to find out the possible dependence or independence of 

the natural frequency of such a cylinder on its length and radius, and hence the 

possible application of the results in the design and manufacture of the Marimba 

musical instrument, whose resonators are cylinders of different lengths and radii. 

The model turned out to be the well known two-dimensional time independent 

Helmholtz partial differential equation, extracted from the three-dimensional time 

dependent wave equation. Because of the geometry of the resonator, cylindrical 

coordinates were introduced and used to transform the model equation from its 

original cartesian coordinates to cylindrical coordinates. Neumann-type boundary 

conditions were imposed on the solution both at the top and bottom ends of the 

cylinder, as well as along the axis and surface wall of the cylinder. The finite 

difference method was applied to convert the continuous problem to a corresponding 

discrete problem and the resulting system of linear equations was solved using the 

MATLAB software. 

The numerical results obtained from simulations of the model using cylinders of 

various lengths and radii establish beyond doubt that the length of the cylinder has a 

direct influence on its natural frequency, and that, in fact, the natural frequency is 

very sensitive to small variations about its optimal resonant length. On the other 
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hand, similar experiments using different radii reveal that, unlike in the case of the 

length, the natural frequency of the cylinder is not only independent from but also 

insensitive to variations in its radius.  

5.2 Conclusion  

This research had set out to establish three hypotheses: 

5.2.1 Hypothesis One 

It was hypothesised that, the relationship between natural frequencies and the 

dimensions of an open-ended resonant cylinder can be modeled mathematically 

using suitable differential equations. The model has been formulated using the finite 

difference method (FDM) in chapter three equation (3.39). The model was used to 

determine the solution of the Helmholtz equation (3.31). The model was used to 

determine relationship between the natural frequencies and the dimensions (length 

and radius) of an open-ended resonant cylinder. 

5.2.2 Hypothesis Two 

It was hypothesised that, the natural frequencies of cylinders are related to the 

dimensions of the cylinder. The mathematical model developed was intended to 

model the resonance in an open ended cylinder. The model can predict the 

relationship between the natural frequencies and its length at a deviation of 2% 

(Table 4.3). 

The results of the mathematical model (Figure 4.2, 4.3, and 4.4) and that of 

laboratory experimental work (Table 4.1) show that, there is a very close relationship 

between the natural frequencies of resonant cylinders and its length. This variation of 
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the cylinder length affects the cylinder resonance. For example, at optimal resonant 

length of 0.65 meters (Figure 4.3), the eigenmode shape is half a cycle and moving 

away in either direction from this mark does not give an exact half cycle (Figure 4.2 

and Figure 4.4). 

Moreover, a variation of radius (Figure 4.5 and Figure 4.6) was not causing the 

sound pressure to vary until the radius was very large (Figure 4.7). 

5.2.3 Hypothesis Three 

It was hypothesised that, solutions of the mathematical model using suitable 

mathematical software are good approximations of the analytical solutions and are 

comparable to laboratory experimental results. The model results provide good 

approximations to the actual laboratory experimental results with a difference of 2% 

(Table 4.3). 

5.3 Recommendations 

Since it is revealed from both simulation of the model and validation of the model 

and confirms the researcher’s hypotheses that, the length of the cylinder has a direct 

influence on its natural frequency, and that it is insensitive to variations in its radius 

then, it is recommended to Marimba manufacturers to take highest consideration on 

the factor of length in order to get the required resonant tone. 

5.4 Future Work 

The study involves mathematical modelling of resonance in open ended cylinder 

.The case of Marimba resonator. It can be extended by changing the numerical 

approach technique from using FD to FE. 
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APPENDICES 

Appendix A 

Laboratory Experimental Data Results 

LENGT

H 

(L) 

EFFECTIVE 

LENGTH(Le) 

Le=L+(0.62*2r) 

AMPLITUDE 

(Volt) 

EFFECTIVE 

 LENGTH(Le) 

Le=L+(0.62*2r) 

AMPLITUDE 

(Volt) 

RADIUS R=0.04 R=0.05 

0.4 0.4496 1.4*0.1 0.4 0.462 2.0*0.1 

0.41 0.4596 2.2*0.1 0.41 0.472 2.2*0.1 

0.42 0.4696 2.4*0.1 0.42 0.482 2.4*0.1 

0.43 0.4796 2.8*0.1 0.43 0.492 2.6*0.1 

0.44 0.4896 3.0*0.1 0.44 0.502 2.8*0.1 

0.45 0.4996 3.4*0.1 0.45 0.512 3.2*0.1 

0.46 0.5096 4.2*0.1 0.46 0.522 3.6*0.1 

0.47 0.5196 4.4*0.1 0.47 0.532 3.8*0.1 

0.48 0.5296 4.8*0.1 0.48 0.542 4.2*0.1 

0.49 0.5396 5.*0.1 0.49 0.552 4.5*0.1 

0.5 0.5496 5.2*0.1 0.5 0.562 5.2*0.2 

0.51 0.5596 5.8*0.1 0.51 0.572 5.6*0.2 

0.52 0.5696 3.1*0.2 0.52 0.582 3.4*0.2 

0.53 0.5796 3.2*0.2 0.53 0.592 3.6*0.2 

0.54 0.5896 3.6*0.2 0.54 0.602 3.8*0.2 

0.55 0.5996 3.8*0.2 0.55 0.612 4.2*0.2 

0.56 0.6096 3.9*0.2 0.56 0.622 4.4*0.2 

0.57 0.6196 3.95*0.2 0.57 0.632 4.5*0.2 

0.58 0.6296 3.95*0.2 0.58 0.642 4.4*0.2 

0.59 0.631 4.0*0.2 0.59 0.652 4.3*0.2 

0.6 0.6496 3.92*0.2 0.6 0.662 1.8*0.2 

0.61 0.6596 3.95*0.2 0.61 0.672 3.8*0.2 

0.62 0.6696 3.9*0.2 0.62 0.682 3.4*0.2 

0.63 0.6796 3.7*0.2 0.63 0.692 3.2*0.2 

0.64 0.6896 7.2*0.1 0.64 0.6896 5.6*0.1 

0.65 0.6996 6.4*0.1 0.65 0.6996 4.8*0.1 

0.66 0.7096 6.3*0.1 0.66 0.7096 4.6*0.1 

0.67 0.7196 5.8*0.1 0.67 0.7196 4.2*0.1 

0.68 0.7296 5.0*0.1 0.68 0.7296 3.8*0.1 

0.69 0.7396 4.3*0.1 0.69 0.7396 3.4*0.1 

0.7 0.7496 4.0*0.1 0.7 0.7496 3.2*0.1 

0.71 0.7596 3.2*0.1 0.71 0.7596 2.8*0.1 

0.72 0.7696 2.4*0.1 0.72 0.7696 2.2*0.1 

0.73 0.7796 1.6*0.1 0.73 0.7796 1.8*0.1 
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Appendix B 

MATLAB CODES 

close all 

clear 

% PROGRAMME TO SOLVE HELMHOLTZ EQUATION  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% INPUT DATA 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%  Lr = the lengths of cylinder in the r direction 

%  Lz=the lengths of cylinder in the z direction 

%  nr = number of nodes in the r direction 

%  nz = number of nodes in the z direction 

%  hr= mesh width in the r-direction  

%  hz= mesh width in the z-direction  

%nn=Total number of non-zero nodes 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Enter simulation parameter 

%nn = ; % Number of non-zero nodes 

%fq =260; % Frequency at middle C in Hz 

% rho = 1.21; % Density of air medium in kg/m^3 

% K=Wave number 

% cs= velocity of propagating  sound waves in m/s 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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  Lz =0.65; 

  cs=340; 

  rho = 1.21; 

  fq =260; 

  Lr  =0.05; 

  k   = 2*pi*fq/cs; 

  w   = 2*pi*fq;   

  nr  =16; 

  nz  =20;   

  hr  = Lr/(nr-1); % introduced a bracket to correct an error 

  hz  = Lz/(nz-1); 

  nn  = nr*nz;  

%PROGRAMMING THE FINITE DIFFERENCE APPROXIMATION 

FORMING THE MATRIX A AND VECTOR  f  WHICH GIVE THE SOLUTION 

FROM Au = f 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

   A = zeros(nn);  

   f = zeros(nn,1); 

% SETTING THE FD EQUATIONS FOR THE INNER NODES 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% west of p ,W=P-1;east of p ,E=P+1;south of p, S=P-nr %north of p,N=P+nr; 

b = 1/(hz*hz); 

                                    d = 1/(hz*hz); 
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g = k*k-2/(hr*hr)-2/(hz*hz); 

for   i = 2:nz-1    % i gives columns i.e. z variation 

for   j = 2:nr-1    % j for rows i.e. radially 

          P  = (i-1)*nr+j; 

          rp = (j-1)*hr;                % tidied up by forming r at P. 

 a  = (1/(hr*hr))-1/(2*hr*rp); 

 c  = (1/(hr*hr))+1/(2*hr*rp); 

          A(P,P)    = g; 

          A(P,P-1)  = a; 

          A(P,P+1)  = c; 

          A(P,P-nr) = b; 

          A(P,P+nr) = d; 

  end 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% SETTING IN THE BOUNDARY CONDITIONS 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

THE BOUNDARY CONDITION TO MODEL THE TOP SURFACE OF A 

CYLINDER INCLUDING THE AXIS AND OUTER SURFACE, ASSUMED THE 

ARBITRARYSOUND SOURCE STRENGTH OF ONE. 

b = 1/(hz*hz); 

d = 1/(hz*hz); 

g = k*k-2/(hr*hr)-2/(hz*hz); 
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for  jt = (nz-1)*nr+2:nz*nr-1;    % j for rows i.e. radially 

      P  = jt; 

      rp = (jt-1)*hr;     % tidied up by forming r at P. 

      a  = (1/(hr*hr))-1/(2*hr*rp); 

      c  = (1/(hr*hr))+1/(2*hr*rp); 

      A(P,P)    = g; 

      A(P,P-1)  = a; 

      A(P,P+1)  = c; 

      A(P,P-nr) = d+b; 

      f(P)=2*d*hz*v0; 

  end   

 %  MODELLING THE LEFT HAND CORNER (CENTRE AXIS) 

d  = 1/(hz*hz); 

gm = k*k-4/(hr*hr)-2/(hz*hz); 

cm = 4*(1/(hr*hr)); 

P  = (nz-1)*nr+1; 

A(P,P)    = gm; 

A(P,P+1)  = cm; 

A(P,P-nr) = 2*b; 

v0=1; 

f(P)=2*v0*hz/(hz*hz);      

%  MODELLING THE RIGHT HAND CORNER (OUTSIDE) CYLINDER 

 b  = 1/(hz*hz); 
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 gm = k*k-2/(hr*hr)-2/(hz*hz);   

 cm = 2*(1/(hr*hr));  

      P  = nr*nz; 

      A(P,P)    = gm; 

      A(P,P-1)  = cm; 

      A(P,P-nr) = 2*b; 

      f(P)=2*v0*hz/(hz*hz); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

THE BOUNDARY CONDITION THAT MODELS THE INNER NODES OF THE 

CYLINDER WALL 

    b  = 1/(hz*hz); 

    d  = 1/(hz*hz); 

    g  = k*k-2/(hr*hr)-2/(hz*hz); 

    am = 2*(1/(hr*hr)); 

   for it=(2*nr):nr:nr*nz-nr 

       A(it,it)    = g; 

       A(it,it-1)  = am; 

       A(it,it-nr) = b; 

       A(it,it+nr) = d; 

       f(it)       = 0; 

   end      

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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THE BOUNDARY CONDITION THAT MODEL THE SYMMETRY AXIS OF 

THE CYLINDER AT THE INNER NODES (NOT TOP OR BOTTOM NODES) 

 b= 1/(hz*hz); 

 d= 1/(hz*hz); 

 gm = k*k-4/(hr*hr)-2/(hz*hz);  

 cm = 4*(1/(hr*hr)); 

  for  

      it= nr+1:nr:(nz-2)*nr+1  

      P  = it; 

      rp = (j-1)*hr;  % tidied up by forming r at P. 

      A(P,P)    = gm; 

      A(P,P+1)  = cm; 

      A(P,P-nr) = b; 

      A(P,P+nr) = d; 

   end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

THE BOUNDARY CONDITION THAT MODEL THE BOTTOM OF THE 

%CYLINDER WHEN OPEN IS THAT, THE ACOUSTIC CPRESSURE IS ZERO, 

%AND SO THE VELOCITY POTENTIAL IS ZERO USING AN ARTIFICIAL 

%NODE AND THE COMPUTATIONAL MOLECULE. 

for it=1:nr 

    A(it,:)=0; 

    A(it,it)=1; 

    f(it)=0; 
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end  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

% MODELLING THE LEFT HAND CORNER (CENTRE AXIS) 

 d  = 1/(hz*hz); 

 gm = k*k-4/(hr*hr)-2/(hz*hz);   

 cm = 4*(1/(hr*hr));  

  P  = 1; 

 A(P,P)    = gm; 

 A(P,P+1)  = cm; 

 A(P,P+nr) = 2*d; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% MODELLING THE RIGHT HAND CORNER (OUTSIDE) CYLINDER 

 d  = 1/(hz*hz); 

 gm = k*k-2/(hr*hr)-2/(hz*hz);   

 cm = 2*(1/(hr*hr));  

 P  = nr;  

 A(P,P)    = gm; 

 A(P,P-1)  = cm; 

 A(P,P+nr) = 2*d;    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% THE BOUNDARY CONDITION THAT MODELS THE INNER NODES OF 

 % THE CYLINDER WALL 

b  = 1/(hz*hz); 
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d  = 1/(hz*hz); 

g  = k*k-2/(hr*hr)-2/(hz*hz); 

am = 2*(1/(hr*hr)); 

for it=(2*nr):nr:nr*nz-nr 

A(it,it)    = g; 

A(it,it-1)  = am; 

A(it,it-nr) = b; 

A(it,it+nr) = d; 

     f(it)       = 0; 

   end      

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

u = A\f; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%PLOTTING SECTION 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

ur = zeros(nn,1); 

for it = 1:nn 

ur(it) = u(nn+1-it); % re-ordering to start numbering from the top 

end  

r = 0:hr:Lr; % setting the radial axis starting at the centre 

z = 0:hz:Lz; % setting the z-axis starting at the top 

DM = rho*w*reshape(ur,nr,nz); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

legend off  
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figure(1) 

mesh(z,r,DM) 

ylabel('radial direction(Lr)') 

xlabel('down the cylinder-Lz') 

zlabel('acoustic pressure-DM') 

shading interp 

colormap(jet) 

view(3) 

title(['Finite difference to approximation Helmholtz equation ']) 

colorbar  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

figure(2) 

contour(z,r,DM,50) 

ylabel('radial direction-Lr') 

xlabel('down the cylinder-Lz') 

zlabel('acoustic pressure-DM') 

title(['Contours of finite difference approximation with h = ,num2str(h)'])  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% 

figure(3) 

surf(z,r,DM) 

ylabel('radial direction-Lr') 

xlabel('down the cylinder-Lz') 

zlabel('acoustic pressure-DM') 
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shading interp 

colormap(jet) 

view(3) 

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

% END OF PROGRAMME 


